...
首页> 外文期刊>Angewandte Chemie >Microwave Effects in Organic Synthesis: Myth or Reality?
【24h】

Microwave Effects in Organic Synthesis: Myth or Reality?

机译:有机合成中的微波效应:神话还是现实?

获取原文
获取原文并翻译 | 示例
           

摘要

Since the first published reports in 1986 on the use of microwave irradiation to "accelerate" organic chemical transformations, there has been considerable speculation and discussion of this effect. Much of the debate has centered around the question whether the observed effects can in all instances be rationalized by purely thermal/kinetic phenomena (thermal microwave effects) arising from the rapid heating and high bulk reaction temperatures attained with microwave dielectric heating, or whether some effects are connected to so-called specific or nonthermal microwave effects. Unfortunately, the definitions of what constitutes a specific or nonthermal microwave effect are somewhat vague and different scientific communities may in fact have different definitions. Most scientists today will agree that the energy of the microwave photon is far too low to directly cleave molecular bonds, and that therefore microwaves cannot "induce" molecules to undergo chemical reactions upon direct absorption of electromagnetic energy, as opposed to ultraviolet and visible radiation (photochemistry). However, in the organic chemistry community claims of the existence of nonthermal microwave effects persist. These effects have been postulated to result from a direct, often stabilizing interaction of the electromagnetic field with specific molecules, intermediates, or even transition states in the reaction medium, which is not connected to a macroscopic change in reaction temperature. It has been argued, for example, that the presence of an electric field affects the orientation of dipolar molecules or intermediates and hence changes the prc-exponential factor A or the activation energy (entropy term) in the Arrhenius equation for certain types of reactions. Furthermore, a similar effect has been proposed for polar reaction mechanisms, where the polarity increases going from the ground state to the transition state, resulting in an enhancement of reactivity by a decrease of the activation energy. Specific microwave effects are caused by the uniqueness of the microwave dielectric heating mechanisms and include, for example, 1) the superheating effect of solvents at atmospheric pressure, 2) the selective heating of, for example, strongly microwave-absorbing heterogeneous catalysts or reagents in a less polar reaction medium (and effects resulting from the differential/selective heating of bi- or multiphasic liquid/ liquid systems), 3) the formation of "molecular radiators" by direct coupling of microwave energy to specific reagents in homogeneous solution (microscopic hotspots), and 4) the elimination of wall effects caused by inverted temperature gradients.
机译:自1986年首次发表有关使用微波辐照“加速”有机化学转化的报告以来,人们就对此效应进行了广泛的猜测和讨论。许多争论集中在以下问题上:是否可以通过微波介电加热达到的快速加热和高整体反应温度引起的纯粹的热/动力学现象(热微波效应)使观察到的效应在所有情况下都能合理化?与所谓的特定或非热微波效应有关。不幸的是,构成特定或非热微波效应的定义有些含糊,不同的科学界实际上可能有不同的定义。今天,大多数科学家都会同意,微波光子的能量太低而无法直接裂解分子键,因此,与紫外线和可见光辐射相反,微波不能在直接吸收电磁能时“诱使”分子进行化学反应(光化学)。然而,在有机化学界,关于非热微波效应的存在的主张一直存在。推测这些效应是由于电磁场与反应介质中特定分子,中间体或什至过渡态的直接,经常稳定的相互作用而引起的,该相互作用与反应温度的宏观变化无关。例如,有人认为电场的存在会影响偶极分子或中间体的取向,从而改变某些类型的反应的Arrhenius方程中的prc指数因子A或活化能(熵项)。此外,对于极性反应机理已经提出了类似的效果,其中极性从基态到过渡态增加,从而通过降低活化能来提高反应性。特定的微波效应是由微波介电加热机制的独特性引起的,例如,包括:1)大气压力下溶剂的过热效应; 2)选择性加热例如吸收大量微波的非均相催化剂或试剂。极性较小的反应介质(以及由两相或多相液体/液体系统的差异/选择性加热产生的影响),3)通过将微波能量直接耦合到均匀溶液中的特定试剂(微观热点),形成“分子辐射体” ),以及4)消除了由温度梯度倒置引起的壁效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号