...
首页> 外文期刊>Angewandte Chemie >Bismuth(V)-Mediated Thioglycoside Activation
【24h】

Bismuth(V)-Mediated Thioglycoside Activation

机译:铋(V)介导的硫糖苷活化

获取原文
获取原文并翻译 | 示例
           

摘要

Chemical glycosylation is a crucial step in any oligosaccharide synthesis. Among the different classes of commonly used glycosyl donors, thioglycosides offer distinct advantages. Thioglycoside donors are relatively simple to prepare, are stable under various reactions for protectingI group manipulations, and offer orthogonality in their activa-tion in the presence of other glycosyl donors.[8] As a result, a wide variety of promoters have been developed for activation of these donors in the past 20 years : from heavy metal-cation-based promoters (Hg~(II) sulfate), to the current halonium-based reagents [e.g., N-iodosuccinimide/trifluoromethane sulfonic acid (NIS/TfOH), M-bromosuccinimide (NBS), IC1 or IBr/AgOTf, etc.], alkylating reagents [methyl triflate (MeOTf)] , and organosulfur-based promoters [e.g., dimethyl(thiomethyl)sulfonium triflate (DMTST), methylsulfenyl triflate (MeSOTf), dimethyl disulfide/triflic anhydride (Me2S/Tf2O), benzenesulfinylpiperidine/triflic anhydride (BSP/TTBP), N-(phenylthio)-ecaprolactam-Tf2O, etc]. A recent method applies single-electron transfer using ruthenium or iridium-containing catalysts that are active under visible light to activate thioglycosides. Although these methods have been effective in carrying out a range of glycosylations, most of these still have a limited scope. Generally, these activations need excess amounts of promoters, or require a co-promoter to form the reactive intermediates. Moreover, present methods often require extremely low temperatures (< —20 °C) as a result of generating reactive intermediates. Some of the popular halonium-based promoters are challenging to use in the presence of alkenes, because they tend to give various addition by-products, thereby ultimately resulting in the cleavage of the alkenyl moiety. These issues with solubility, undesired by-products, stability, or reagent handling are particularly problematic in the context of the development of robust automated protocols for oligosaccharide synthesis. To circumvent some of these issues with current promoter systems, we herein report a straightforward method for the activation of thiopropylglycosides for coupling to various acceptors in good to excellent yields by utilizing a bismuth(V) compound without additional additives/copromoters.
机译:化学糖基化是任何寡糖合成中的关键步骤。在不同类别的常用糖基供体中,硫糖苷具有明显的优势。硫代糖苷供体的制备相对简单,在保护I基团操作的各种反应下均稳定,在存在其他糖基供体的情况下其活化作用具有正交性。[8]结果,在过去的20年中,已经开发了多种启动子来激活这些供体:从重金属阳离子基启动子(Hg〜(II)硫酸盐)到目前的lon基试剂[例如, N-碘丁二酰亚胺/三氟甲烷磺酸(NIS / TfOH),M-溴丁二酰亚胺(NBS),IC1或IBr / AgOTf等],烷基化试剂[三氟甲磺酸甲酯(MeOTf)]和有机硫基助催化剂[例如二甲基(三氟甲磺酸硫甲基)s(DMTST),三氟甲磺酸甲基亚砜(MeSOTf),二甲基二硫/三氟甲磺酸酐(Me2S / Tf2O),苯亚磺酰基哌啶/三氟甲磺酸酐(BSP / TTBP),N-(苯硫基)-己内酰胺-Tf2O等]。最近的方法使用在可见光下具有活性的含钌或铱的催化剂进行单电子转移,以活化硫糖苷。尽管这些方法在进行一系列糖基化反应方面是有效的,但大多数方法仍具有有限的范围。通常,这些活化需要过量的启动子,或需要辅助启动子以形成反应性中间体。此外,由于产生反应性中间体,目前的方法通常需要极低的温度(<-20°C)。一些流行的基于-的促进剂难以在烯烃存在下使用,因为它们倾向于产生各种加成副产物,从而最终导致烯基部分的裂解。在开发用于寡糖合成的可靠的自动化方案的背景下,与溶解度,不希望的副产物,稳定性或试剂处理有关的这些问题尤其成问题。为了用当前的促进剂体系规避这些问题中的一些,我们在此报告了一种直接的方法,该方法通过使用铋(V)化合物而无需额外的添加剂/助促进剂来活化硫丙基糖苷以良好至优异的产率偶联至各种受体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号