...
首页> 外文期刊>Angewandte Chemie >Many-Body Dispersion Interactions in Molecular Crystal Polymorphism
【24h】

Many-Body Dispersion Interactions in Molecular Crystal Polymorphism

机译:分子晶体多态性中的多体分散相互作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Polymorphs of molecular crystals are often very close in energy, yet they may possess very different physical and chemical properties. The understanding of polymorphism is therefore of great importance for a variety of applications, ranging from drug design to nonlinear optics and hydrogen storage. While the crystal structure prediction blind tests conducted by the Cambridge Crystallographic Data Centre have shown steady progress toward reliable structure prediction for molecular crystals several challenges remain, including molecular salts, hydrates, and flexible molecules with several stable conformers. The ability to identify and rank all of the relevant polymorphs of a given molecular crystal hinges on an accurate description of their relative energetic stability. Hence, a first-principles quantum mechanical method that can attain the required accuracy of around 0.1-0.2 kcalmol~(-1) would clearly be an indispensable tool for polymorph prediction. In this work, we show that accounting for the nonadditive many-body dispersion (MBD) energy beyond the standard pairwise approximation is crucial for the correct qualitative and quantitative description of polymorphism in molecular crystals. We demonstrate this through three fundamental and stringent benchmark examples: glycine, oxalic acid, and tetrolic acid. These systems represent a broad class of molecular crystals, comprising hydrogen-bonded (H-bonded) networks of amino acids and carboxylic acids.
机译:分子晶体的多晶型物通常能量非常接近,但它们可能具有非常不同的物理和化学性质。因此,对多态性的理解对于从药物设计到非线性光学和氢存储的各种应用都非常重要。剑桥晶体数据中心进行的晶体结构预测盲测表明,向分子晶体可靠的结构预测迈出了稳步的步伐,仍然存在一些挑战,包括分子盐,水合物和具有几个稳定构象异构体的柔性分子。识别和排列给定分子晶体的所有相关多晶型物的能力取决于其相对能量稳定性的准确描述。因此,能够获得所需精度约0.1-0.2 kcalmol〜(-1)的第一性原理量子力学方法显然将是多态预测的必不可少的工具。在这项工作中,我们表明解决超出标准的成对近似的非加性多体弥散(MBD)能量对于分子晶体中多态性的正确定性和定量描述至关重要。我们通过三个基本且严格的基准示例来证明这一点:甘氨酸,草酸和四乙酸。这些系统代表了一大类分子晶体,包括氨基酸和羧酸的氢键(H键)网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号