...
首页> 外文期刊>Angewandte Chemie >Controlling Helix Formation in the γ-Peptide Superfamily: Heterogeneous Foldamers with Urea/Amide and Urea/Carbamate Backbones
【24h】

Controlling Helix Formation in the γ-Peptide Superfamily: Heterogeneous Foldamers with Urea/Amide and Urea/Carbamate Backbones

机译:控制γ肽超家族中的螺旋形成:具有尿素/酰胺和尿素/氨基甲酸酯骨架的异构折叠剂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Structures and functions of biopolymers have inspired the design, synthesis, and characterization of a multitude of synthetic oligomeric backbones with well-defined and predictable folding patterns, termed foldamers. The diversity of foldamer structures originates from the chemical diversity of constituent units which have been developed to impose conformational restriction and promote folding. Like nucleic acids and proteins, many foldamer backbones are built from one type of subunit, and diversity is generally created through side chains (e.g. aliphatic β and γ peptides, aromatic 5 peptides, hydrazinopeptides, aminoxy peptides, aliphatic oligoureas). Foldamer synthesis is, however, not limited to homogenous backbones. Approaches based on sequences combining two or more types of monomers, that is, heterogeneous foldamers, have recently been the subject of much interest as they considerably expand the diversity of foldamer backbones accessible from a limited set of building blocks. For example, peptide helices with different surface topologies and functions have been created by combining aliphatic α-, β-, and γ-amino acid residues at different periodicities. Alternatively, various combinations of iso-steric building units may be used to create isomorphic foldamer backbones which subtly differ from their homoge- neous counterparts in terms of physicochemical properties (e.g. water solubility, backbone polarity, conformational stability, side-chain projection) and ultimately biological activities. We have previously demonstrated that heterogeneous backbone sequences consisting of isosteric amide (A) and urea (U) units with proteinogenic side chains (Figure 1 a) can be used to tune and optimize biological activities of corresponding homooligomers (i.e., helical γ~4-peptides A_n and N,N'-linked oligoureas U?). Whereas amphi-philic helical γ~4-peptides A_n, designed to mimic host defense peptides, failed to display any significant antimicrobial activity, the insertion of discrete A units in U_n sequences led to active sequences with increased selectivity for bacterial membranes compared to the cognate U_n homooligomer.
机译:生物聚合物的结构和功能激发了设计,合成和表征多种合成低聚物骨架的特性,这些骨架具有定义明确且可预测的折叠模式,称为折叠剂。折叠剂结构的多样性源自组成单元的化学多样性,该组成单元已被开发以施加构象限制并促进折叠。像核酸和蛋白质一样,许多折叠架主链是从一种亚基构建的,并且多样性通常是通过侧链产生的(例如脂族β和γ肽,芳族5肽,肼基肽,氨氧基肽,脂族寡核苷酸)。但是,Foldamer合成不限于均质主链。最近,基于结合两种或更多种类型单体(即异种折叠剂)的序列的方法引起了人们的极大兴趣,因为它们极大地扩展了可从有限组构件中获得的折叠剂​​骨架的多样性。例如,已经通过以不同的周期组合脂族α-,β-和γ-氨基酸残基产生了具有不同表面拓扑和功能的肽螺旋。或者,可以使用各种立体构筑单元的组合来创建同构的折叠构架主链,这些构架在物理化学性质(例如水溶性,主链极性,构象稳定性,侧链投影)方面与同构的折叠构架主旨略有不同生物活动。我们以前已经证明,由具有蛋白原性侧链的等位酰胺(A)和尿素(U)单元组成的异构主链序列(图1a)可用于调整和优化相应同源寡聚体(即螺旋γ〜4-)的生物活性。肽A_n和N,N′-连接的寡核苷酸U 1)。设计模仿宿主防御肽的两亲性螺旋γ〜4-肽A_n无法显示任何显着的抗菌活性,而在U_n序列中插入离散的A单元会导致活性序列对细菌膜的选择性比同系的有所提高U_n均聚物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号