...
首页> 外文期刊>Angewandte Chemie >Silicon Nanowires Show Improved Performance as Photocathode for Catalyzed Carbon Dioxide Photofixation
【24h】

Silicon Nanowires Show Improved Performance as Photocathode for Catalyzed Carbon Dioxide Photofixation

机译:硅纳米线作为光阴极可用于催化二氧化碳光固定,显示出改进的性能

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to use sunlight, the most abundant form of energy on earth's surface, to power chemical reactions is a unique feature of natural photosynthesis.The process enables the storage of solar energy that is intermittent in nature. With carbon dioxide (CO2) as a feedstock, it also produces highly specific organic chemicals that are the essential energy suppliers or building blocks for a wide range of important natural processes. Significant research efforts have been devoted to mimicking the process in artificial systems, the major focus being on how to improve solar energy conversion efficiencies. Relatively underwhelming attention is paid to issues related to low product specificities when CO2 is reduced. Inspired by the detailed mechanisms of the dark reactions in the Calvin cycle,we recently reported a strategy to combat this problem. Briefly, the key was to avoid direct reduction of CO2, which is prone to produce carbon atoms of varying oxidation states. Instead, we rely on the creation of an intermediate that subsequently reacts with CO2 selectively. The idea is similar to the approach of Bocarsly et al. using pyridinium for the production of methanol, although we seek to produce more complex and hence synthetically relevant organic molecules. In principle, the scope of reactions can be significantly broadened if the intermediate produced by photoreduction is a catalyst that can be used to react with CO2 to yield the desired product. Similar to photosynthesis, the carbon-carbon bond-forming reactions are independent of photons (e.g. the dark reactions), allowing for an improved control in selectivity. To test this hypothesis, here we report our success in performing CO2 photofixation with the help of the [Ni(bpy)2] catalyst. To our surprise and delight, we observed that the Si nanowire (SiNW) photo-electrode exhibited more than 300 mV turn-on potential increase when compared with planar Si. We attributed this to the multifaceted nature of the nanowires.
机译:利用太阳光是地球表面上最丰富的能量形式来推动化学反应的能力是自然光合作用的独特特征。该过程可以存储间歇性的太阳能。以二氧化碳(CO2)为原料,它还可以生产高度特定的有机化学物质,这些化学物质是各种重要自然过程的重要能源供应商或基石。为了模仿人造系统中的过程,已进行了大量研究工作,主要重点是如何提高太阳能转换效率。减少CO2时,与产品特异性低相关的问题引起了相对的关注。受加尔文循环中黑暗反应的详细机制的启发,我们最近报告了解决这一问题的策略。简而言之,关键是避免直接还原CO2,因为CO2易于产生不同氧化态的碳原子。相反,我们依赖于中间体的产生,该中间体随后与CO2选择性反应。这个想法类似于Bocarsly等人的方法。尽管我们寻求生产更复杂的,因此具有合成意义的有机分子,但仍使用吡啶鎓生产甲醇。原则上,如果通过光还原产生的中间体是可用于与CO2反应以生成所需产物的催化剂,则反应范围可大大拓宽。类似于光合作用,碳-碳键形成反应独立于光子(例如暗反应),从而改进了对选择性的控制。为了验证这一假设,在这里我们报告了在[Ni(bpy)2]催化剂的帮助下进行CO2光固定的成功经验。令我们惊讶和高兴的是,我们观察到与平面Si相比,Si纳米线(SiNW)光电极的开启电势增加了300 mV以上。我们将其归因于纳米线的多面性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号