...
首页> 外文期刊>Angewandte Chemie >Selective Visual Detection of TNT at the Sub-Zeptomole Level
【24h】

Selective Visual Detection of TNT at the Sub-Zeptomole Level

机译:亚分​​子水平上TNT的选择性视觉检测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Realizing the limits of sensitivity, while maintaining selectivity, is an ongoing quest. Among the multitude of requirements, national security, early detection of diseases, safety of public utilities, and radiation prevention are some of the areas in need of ultralow detection. Structural, functional, and electronic features of nanomaterials are used to develop reliable analytical methods. Several kinds of surface-enhanced spectroscopy, surface-enhanced Raman in particular, can be used for such applications; the technique may be further enhanced by spatially separating the analyte and the active plasmonic nanostructure with an insulator, a method known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Creating uniform anisotropic structures with nanoscale attributes by simple solution chemistry and combining analyte-selective chemistry on such surfaces enables ultrasensitive and selective detection methods. Noble metal quantum clusters (QCs), a new family of atomically precise nanomolecules with intense luminescence, along with their protein protected analogues, are highly sensitive and selective for specific analytes. Anchoring such QCs on mesoscale (100 nm to a few um) particles leads to surface-enhancement of their luminescence and can create a new platform for ultrasensitive detection, especially when combined with the use of optical microscopy. Gold meso-flowers (MFs) are anisotropic materials with unique five-fold symmetric stems containing surface-enhancing nanoscale features. An entire MF is only a few micrometers in size, and its distinct shape allows for unique identification by optical microscopy; thus, changes in the properties of an MF can be used for the immediate and efficient detection of analytes. Herein, we demonstrate the selective detection of 2,4,6-trinitrotoluene (TNT) at the sub-zeptomole level (10~(-21) moles) through a combination of these strategies on a mesostructure.
机译:在保持选择性的同时实现灵敏度的极限是一项持续的追求。在众多需求中,国家安全,疾病的早期发现,公共事业的安全和辐射防护是超低检测的一些领域。纳米材料的结构,功能和电子特性可用于开发可靠的分析方法。几种表面增强光谱学,尤其是表面增强拉曼光谱可以用于这种应用。通过用绝缘体在空间上分离分析物和活性等离子体纳米结构,可以进一步增强该技术,这种方法称为壳隔离纳米颗粒增强拉曼光谱(SHINERS)。通过简单的溶液化学方法创建具有纳米级属性的均匀各向异性结构,并在此类表面上结合分析物选择性化学方法,可以实现超灵敏和选择性的检测方法。贵金属量子簇(QC)是一种具有强烈发光的原子精确纳米分子的新家族,及其蛋白质保护的类似物,对特定分析物具有高度的敏感性和选择性。将此类QC固定在中尺度(100 nm至几um)颗粒上会导致其发光的表面增强,并可以创建超灵敏检测的新平台,特别是与光学显微镜结合使用时。金介花(MFs)是各向异性的材料,具有独特的五重对称茎,包含表面增强的纳米级特征。整个MF尺寸只有几微米,其独特的形状可以通过光学显微镜进行唯一识别。因此,MF特性的变化可用于立即有效地检测分析物。在本文中,我们证明了通过在介孔结构上组合这些策略,可以在亚ze子酮水平(10〜(-21)摩尔)下选择性检测2,4,6-三硝基甲苯(TNT)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号