...
首页> 外文期刊>Angewandte Chemie >Thermolabile Noble Metal Precursors: (NO)[Au(NO3)4], (NO)2[Pd(NO3)4], and (NO)2[Pt(NO3)6]
【24h】

Thermolabile Noble Metal Precursors: (NO)[Au(NO3)4], (NO)2[Pd(NO3)4], and (NO)2[Pt(NO3)6]

机译:不耐热的贵金属前体:(NO)[Au(NO3)4],(NO)2 [Pd(NO3)4]和(NO)2 [Pt(NO3)6]

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Noble metals play a crucial role in various fields of application, for example, as optical and electrical devices and as heterogeneous catalysts. For most of these applications, the metals have to be provided in a well-defined form to address the desired properties. For example, catalytic activity is usually strongly surface-dependent and the production of nanoparticles of the metals is often mandatory.A second example is the use of metals in electronic devices as conductor pathways, which requires well-defined depositions of the metals. Owing to this significant impact, several physical and chemical processes have been developed to allow for the deposition of noble metals in different shapes. Among these, chemical vapor deposition (CVD) is the most common chemical procedure, and numerous precursors are known, especially for the element gold. The drawback of CVD techniques is that organometallic compounds are usually used, leading to significant carbon contamination of the deposited metals. Recently we have shown that the nitrylium nitrate (NO2)[Au(NO3)4] is a suitable thermolabile precursor for gold; this species was obtained from the reaction of elemental gold with N2O5. The use of nitrogen oxides for the preparation of anhydrous nitrates can be traced back to the 1970s when Addison et al. reported first investigations, mainly based on N2O4. The advantage of (NO2)[Au(NO3)4] as a precursor is that it does not contain carbon or chlorine, and that its decomposition leads only to volatile products besides the metal. Moreover, the nitrate can be dissolved in N2O5, so that deposition of the precursor for example on surfaces is easy to perform. Interestingly, this precursor can not only be decomposed thermally but also using an electron beam, which allows the simple "writing" of gold structures. These results led us to investigate whether noble metals can generally be transformed into thermolabile nitrates using N2O5. In the course of these investigations, we were able to prepare the palladium and platinum compounds (NO)2[Pd(NO3)4] and (NO)2[Pt(N03)6], and furthermore a new gold nitrate, (NO)[Au(NO3)4].
机译:贵金属在各种应用领域中都起着至关重要的作用,例如,作为光学和电气设备以及非均相催化剂。对于大多数这些应用,必须以定义明确的形式提供金属以解决所需的性能。例如,催化活性通常强烈地依赖于表面,并且金属的纳米颗粒的生产通常是强制性的。第二个例子是在电子设备中使用金属作为导体路径,这需要金属的明确沉积。由于这种显着的影响,已经开发了几种物理和化学方法以允许沉积不同形状的贵金属。其中,化学气相沉积(CVD)是最常见的化学过程,并且已知许多前驱物,特别是对于金元素。 CVD技术的缺点是通常使用有机金属化合物,导致沉积金属的显着碳污染。最近,我们表明硝酸硝氮(NO2)[Au(NO3)4]是金的合适的热不稳定前体。该物质是从元素金与N2O5的反应中获得的。使用氮氧化物制备无水硝酸盐的历史可以追溯到1970年代,Addison等人(1991年)提出。报告了首次调查,主要基于N2O4。 (NO2)[Au(NO3)4]作为前体的优点是它不含碳或氯,并且其分解仅会导致除金属以外的挥发性产物。此外,硝酸盐可以溶解在N 2 O 5中,使得易于进行例如在表面上的前体的沉积。有趣的是,该前体不仅可以热分解,而且可以使用电子束分解,从而可以简单地“书写”金结构。这些结果使我们研究了是否可以使用N2O5将贵金属一般转化为对热不稳定的硝酸盐。在这些研究过程中,我们能够制备钯和铂化合物(NO)2 [Pd(NO3)4]和(NO)2 [Pt(NO3)6],此外还制备了新的硝酸金(NO )[Au(NO3)4]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号