...
首页> 外文期刊>Continental Shelf Research: A Companion Journal to Deep-Sea Research and Progress in Oceanography >Interannual variability and sensitivity study of the ocean circulation and thermohaline structure in Prince William Sound, Alaska
【24h】

Interannual variability and sensitivity study of the ocean circulation and thermohaline structure in Prince William Sound, Alaska

机译:阿拉斯加威廉王子湾海洋环流和热盐结构的年际变化和敏感性研究

获取原文
获取原文并翻译 | 示例
           

摘要

The interannual variability and sensitivity of ocean circulation and the thermocline Structure of Prince William Sound, Alaska were examined using a 3D circulation model. A 4-year (1995-1998) simulation compared well with field observations of circulation and monthly mean sea Surface temperature Lit NOAA Station 46060. Seasonal circulation regimes were characterized by an anticyclonic gyre in the central sound in January-April, and a strong cyclonic gyre in the central sound in September to December, while summer was the transition period Of file two Circulation regimes. The size, position and strength of the gyres and thermohaline depth in the central sound showed small interannual variability. Freshwater displayed a very strong seasonal cycle in the sound with minimum in April-May and maximum in October with a spatial distribution of more in the northwest sound and less in the other areas. The simulated freshwater thickness in the whole Sound showed Lip to 20% interannual variability related to wind. The numerical oil spill drift experiments also showed a large interannual variability of possible oil spill trajectories. Sensitivity studies showed the relative importance of cach model forcing: (1) wind has more impact on the surface circulation and mixed layer depth. Without wind, the surface Current became weaker and the thermocline became shallower; (2) tidal current is a major current in the sound and important to surface and bottom mixing. Without tide, the thermocline depth became shallower; (3) the magnitude of the Alaska coastal current (ACC) inflow determined the outflow current through Montague Strait. Doubled ACC inflow could change the cyclonic circulation pattern in October in case of normal or less ACC inflow into a northward jet with a small accompanying anticyclonic gyre and strongly flush the west sound in addition to the central sound. Also, double ACC inflow would increase the mix-layer depth significantly; and (4) the surface T, S restoring is critical to maintain T, S seasonal cycle and surface circulation patterns. Salinity was the most important factor determining the central sound circulation patterns. (C) 2003 Elsevier Ltd. All rights reserved. [References: 16]
机译:使用3D环流模型检查了海洋环流的年际变化和敏感性以及阿拉斯加威廉王子湾的温跃层结构。一个为期4年(1995-1998年)的模拟与现场观测的环流和月平均海面温度升高NOAA站46060进行了比较。季节性环流的特征是在1月至4月的中央声音有一个反气旋回旋和强烈的气旋。回旋在9月至12月是中央声音,而夏季是文件两种循环制度的过渡时期。回旋的大小,位置和强度以及中央声音中的热盐深度显示出较小的年际变化。淡水在声音中表现出强烈的季节性周期,4月至5月最小,10月最大,西北声音中的空间分布较大,而其他区域则较小。在整个“声音”中模拟的淡水厚度显示,Lip与风有关的年际变化为20%。数值漏油漂移实验还表明,可能的漏油轨迹具有较大的年际变化。敏感性研究表明,强迫模型的相对重要性:(1)风对地表环流和混合层深度的影响更大。没有风,表面电流变弱,而温跃层变浅。 (2)潮流是声音中的主要电流,对表面和底部的混合很重要。没有潮汐,温床的深度就变浅了。 (3)阿拉斯加沿海海流(ACC)的流入量决定了流经Mont​​ague海峡的流出流。如果正常或较少的ACC流入带有较小伴随反旋风回旋的北向射流,则ACC流入量增加一倍可能会改变10月的气旋循环模式,并且除了中心声音外,还会强烈冲刷西方的声音。同样,双ACC流入将显着增加混合层的深度。 (4)恢复表面的T,S对于维持T,S的季节性周期和表面循环模式至关重要。盐度是决定中央声音循环模式的最重要因素。 (C)2003 Elsevier Ltd.保留所有权利。 [参考:16]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号