...
首页> 外文期刊>Journal of natural gas science and engineering >Pressure and rate transient analysis of composite shale gas reservoirs considering multiple mechanisms
【24h】

Pressure and rate transient analysis of composite shale gas reservoirs considering multiple mechanisms

机译:考虑多种机理的复合页岩气储层压力和速率瞬变分析

获取原文
获取原文并翻译 | 示例
           

摘要

Based on multiple mechanisms, including adsorption/desorption, viscous flow, diffusive flow in shale matrix and stress sensitivity of natural fractures, a new semi-analytical Composite model is presented for multi-stage fractured horizontal well (MFHW) in shale gas reservoirs. The simplified composite model of an actual gas reservoir is composed of an inner and an outer region. Inner region represents stimulated reservoir volume (SRV) and contains natural fractures and matrix. Matrix-natural fracture transfer flow is assumed to be pseudo-steady state (PSS) or transient state (TS) which are described by the Warren & Root and the De Swan models respectively. Outer region is un-stimulated reservoir volume (USRV), which is described by single porosity medium model. First, transient flow model for continuous line source in composite shale gas reservoir is established. Perturbation method is applied to linearize the model. Then the line source solution is solved by Laplace transformation. Pressure responses of multistage fractured horizontal well is obtained using principle of superposition. The model is verified with the available field data from the Barnett Shale. In addition, transient pressure and production rate of MFHW in shale gas reservoirs with consideration of multiple mechanisms and SRV are analyzed and five typical regimes are identified: radial flow in SRV, interporosity flow, region pseudo-steady flow, diffusive flow and late pseudo-radial flow. In PSS transfer model, type curve has two cavities: the early one is caused by pseudo-steady interporosity flow between natural fractures and matrix and the late one is caused by diffusive flow in the matrix. But in TS transfer model, there is no obvious cavity in interporosity flow period due to subtle pressure fluctuation. The effects of relevant parameters on transient pressure and production rate are analyzed, including SRV radius, stress sensitivity coefficient, adsorption index, storability ratio, interporosity coefficient and diffusivity coefficient. The results demonstrate that larger SRV can reduce formation energy depletion and improve production rate. Stress sensitivity causes more pressure depletion, while desorption and diffusion can compensate for the pressure loss in the formation. The production rate increases as adsorption index sigma rises. Storability ratio of natural fractures omega(f) and interporosity coefficient lambda(1) mainly affect interporosity flow period while storability ratio of matrix omega(m) and diffusivity coefficient lambda(2) mainly have effects on diffusive flow period. The larger the value of these four parameters, the larger the production rate in corresponding periods. (C) 2015 Elsevier B.V. All rights reserved.
机译:基于多种机理,包括页岩基质中的吸附/解吸,粘性流,扩散流和天然裂缝的应力敏感性,提出了一种新的半解析复合模型,用于页岩气储层的多级裂缝水平井(MFHW)。实际储气库的简化复合模型由内部区域和外部区域组成。内部区域代表增产油藏(SRV),并包含天然裂缝和基质。假定基质自然裂缝传输流是伪稳态(PSS)或瞬态(TS),分别由Warren&Root模型和De Swan模型描述。外部区域是未增产的储层容积(USRV),用单孔介质模型描述。首先,建立了复合页岩气藏连续线源瞬态流动模型。应用摄动法使模型线性化。然后通过拉普拉斯变换求解线源解决方案。利用叠加原理获得了多级压裂水平井的压力响应。该模型已使用Barnett页岩中的可用现场数据进行了验证。此外,分析了页岩气储层中MFHW的瞬态压力和生产率,并考虑了多种机理和SRV,并确定了五个典型状态:SRV中的径向流,孔隙间流,区域拟稳态流,扩散流和后期拟静流。径向流。在PSS传递模型中,类型曲线有两个空腔:早期是由天然裂缝和基质之间的拟稳态孔隙流动引起的,晚期是由基质中的扩散流动引起的。但是在TS传递模型中,由于微弱的压力波动,在孔隙流动期间没有明显的空腔。分析了相关参数对瞬态压力和生产率的影响,包括SRV半径,应力敏感性系数,吸附指数,耐贮性比,孔隙率系数和扩散系数。结果表明,较大的SRV可以减少地层能量消耗并提高生产率。应力敏感性引起更多的压力消耗,而解吸和扩散可以补偿地层中的压力损失。生产率随着吸附指数sigma的增加而增加。天然裂缝的储藏率omega(f)和孔隙度系数lambda(1)主要影响孔隙度的流通期,而基质omega(m)和扩散系数lambda(2)的储藏率主要影响扩散期。这四个参数的值越大,相应时期的生产率越高。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号