首页> 外文期刊>Journal of natural gas science and engineering >Two methods for simulating mud discharge after emergency disconnection of a drilling riser
【24h】

Two methods for simulating mud discharge after emergency disconnection of a drilling riser

机译:模拟立管紧急断开后排泥的两种方法

获取原文
获取原文并翻译 | 示例
           

摘要

In marine floating drilling, emergency disconnection of a drilling riser is required in harsh environments or loss of dynamic positioning control. After disconnection, drilling mud in the riser discharges directly from the riser bottom, and seawater refills the vacancy emptied out after mud falling through refill valves. This paper presents two new simulation procedures for this unsteady flow. The first one is a whole fluid column (WFC) model and it is solved by a cubic equation. The second one is a computational fluid dynamics (CFD) procedure, in which two high-resolution CFD schemes are applied for the first time to discrete a special governing equation, and Level Set method is adopted to track the interface between mud column and refilled seawater at each time step. Two methods can respectively provide variations of flow velocity, fluid pressure, whole column weight and flow friction force in a whole mud release duration. In particular, WFC method can easily predict overall trends of several parameters during a whole discharge period, which are prerequisite parameters for dynamic analysis of a riser in hanging state; CFD method is very sensitive to every detailed fluctuation of velocity and pressure in the initial moment of mud discharge, and can be integrated into a structural model for riser recoil response analysis. For a drilling riser with 2150 m, it takes 195.83 s to replace all mud column by seawater, and the maximal discharge velocity is 14.61 m/s. During mud falling, the top of mud column keeps static for 2.29 s before the first pressure wave reaches, and fluid pressure of part column section drops to zero and lasts 1-3 s. In addition, the maximal values of fluid weight-loss and friction force are both close to half of the whole column weight. These results are beneficial for riser system design and risk control of riser recoil. (C) 2015 Elsevier B.V. All rights reserved.
机译:在海上浮动钻井中,在恶劣环境中或需要动态定位控制时,必须紧急断开立管。断开连接后,立管中的钻探泥浆直接从立管底部排出,海水通过泥浆从补水阀掉落后重新填充空出的空位。本文针对这种非恒定流提出了两种新的仿真程序。第一个是整个流体塔(WFC)模型,并通过三次方程式求解。第二个是计算流体动力学(CFD)程序,其中首次应用了两种高分辨率CFD方案来离散一个特殊的控制方程,并采用Level Set方法跟踪泥浆柱与回填海水之间的界面在每个时间步。在整个泥浆释放期间,两种方法可以分别提供流速,流体压力,整个色谱柱重量和流体摩擦力的变化。尤其是,WFC方法可以轻松预测整个放电期间几个参数的总体趋势,这是对悬挂状态下立管进行动态分析的前提参数; CFD方法对排泥初期的速度和压力的每个详细波动非常敏感,可以集成到立管反冲响应分析的结构模型中。对于一个2150 m的立管,用海水代替所有泥浆柱需要195.83 s,最大排出速度为14.61 m / s。在掉泥过程中,在第一个压力波到达之前,泥浆柱的顶部保持静止状态2.29 s,部分柱状区的流体压力降至零并持续1-3 s。此外,流体失重和摩擦力的最大值都接近整个色谱柱重量的一半。这些结果对于立管系统设计和立管后坐力的风险控制都是有益的。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号