...
首页> 外文期刊>Journal of Low Power Electronics >Energy-Efficient Dual-Voltage Design Using Topological Constraints
【24h】

Energy-Efficient Dual-Voltage Design Using Topological Constraints

机译:使用拓扑约束的节能双电压设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We propose a method for dual supply voltage digital design to reduce energy consumption without violating the given performance requirement. Although the basic idea of placing low voltage gates on non-critical paths is well known, a new two-step procedures does it so more efficiently. First, given a circuit and its nominal single supply voltage, we find a suitable value for a lower second supply voltage that is likely to give the best advantage in power reduction. Besides, using the critical path timing constraint and a linear-time gate slack calculation we also classify gates into three groups. All gates in Group 1 can be simultaneously assigned the lower voltage. Any gate in Group 2 can be assigned the lower voltage but then gate slacks must be recalculated because the group classifications may change. No gate in Group 3 can be assigned the lower voltage. A second step then assigns the lower voltage to the largest possible number of gates using the gate classifications and imposing a topological constraint, preventing any low voltage gate from feeding into a higher voltage gate, thus avoiding the use of level converters. SPICE simulation of dual-voltage ISCAS'85 benchmark circuits using the 90nm bulk CMOS PTM (predictive technology model) shows energy savings of up to 60% with no increase in the original critical path delay and up to 70% with relaxed critical path delay.
机译:我们提出了一种双电源电压数字设计的方法,以在不违反给定性能要求的情况下降低能耗。尽管将低压栅极放置在非关键路径上的基本思想是众所周知的,但是新的两步过程可以更有效地做到这一点。首先,在给定电路及其标称单电源电压的情况下,我们找到了一个较低的第二电源电压的合适值,该值很可能在降低功耗方面具有最佳优势。此外,使用关键路径时序约束和线性时间门松弛计算,我们还将门分为三类。可以同时为组1中的所有门分配较低的电压。可以为组2中的任何门分配较低的电压,但是由于组的分类可能会发生变化,因此必须重新计算门余量。在第3组中,没有门可以分配较低的电压。然后,第二步使用门分类将较低的电压分配给尽可能多的门,并施加拓扑约束,从而防止任何低电压门馈入高电压门,从而避免使用电平转换器。使用90nm批量CMOS PTM(预测技术模型)对双电压ISCAS'85基准电路的SPICE仿真显示,在不增加原始关键路径延迟的情况下,节能高达60%,而在松弛关键路径延迟的情况下,节能高达70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号