...
首页> 外文期刊>Journal of Low Power Electronics >Process, Voltage and Temperature Variations Aware Low Leakage Approach for Nanoscale CMOS Circuits
【24h】

Process, Voltage and Temperature Variations Aware Low Leakage Approach for Nanoscale CMOS Circuits

机译:用于纳米级CMOS电路的工艺,电压和温度变化的低泄漏方法

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we propose a transistor level approach for leakage as well as variability issues reduction. Modern battery operated portable systems require long life battery with large functionality on single substrate buffer. Leakage current and variability issues are increasing rapidly while moving towards the ultra deep submicron regime; and hence affect the performance characteristics of the implemented circuits. Leakage power dissipation as well as process, voltage and temperature variations are the crucial concern in nanoscale CMOS circuits since increasing importance of battery operated portable systems. In this article; we have presented a novel transistor level technique to mitigate leakage as well as process, voltage and temperature variations for designing the energy efficient reliable CMOS circuits in nanoscale regime. The simulated results are obtained using HSPICE tool with predictive technology process model file at 32 nm technology node. The process, voltage and temperature variations are evaluated through Monte-Carlo simulations performed on 1000 samples. The lower power delay product is the big outcome of this approach and makes it an influential leakage reduction technique. The power delay product and energy uncertainties of the approach are 3X less as compared to conventional design and hence more suitable for future energy efficient nanoscale CMOS circuits.
机译:在本文中,我们提出了一种用于泄漏和减少可变性问题的晶体管级方法。现代电池供电的便携式系统需要在单个基板缓冲器上具有大功能的长寿命电池。泄漏电流和可变性问题正朝着超深亚微米体制迅速发展。因此会影响已实现电路的性能特征。漏电功耗以及工艺,电压和温度变化是纳米级CMOS电路中的关键问题,因为电池供电的便携式系统的重要性日益提高。在这篇文章中;我们提出了一种新颖的晶体管级技术来减轻泄漏以及工艺,电压和温度变化,以设计纳米级能效可靠的CMOS电路。使用具有预测技术过程模型文件的HSPICE工具在32 nm技术节点处获得了仿真结果。通过对1000个样本执行的蒙特卡洛模拟评估过程,电压和温度变化。较低的功率延迟乘积是这种方法的主要成果,并使其成为一种有影响力的泄漏减少技术。与传统设计相比,该方法的功率延迟乘积和能量不确定性降低了3倍,因此更适合于未来的高能效纳米级CMOS电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号