...
首页> 外文期刊>Journal of mass spectrometry: JMS >Shift reagents in ion mobility spectrometry: the effect of the number of interaction sites, size and interaction energies on the mobilities of valinol and ethanolamine
【24h】

Shift reagents in ion mobility spectrometry: the effect of the number of interaction sites, size and interaction energies on the mobilities of valinol and ethanolamine

机译:离子迁移谱中的移位试剂:相互作用位点的数量,大小和相互作用能对缬氨醇和乙醇胺迁移率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Overlapping peaks interfere in ion mobility spectrometry (IMS), but they are separated introducing mobility shift reagents (SR) in the buffer gas forming adducts with different collision cross-sections (size). IMS separations using SR depend on the ion mobility shifts which are governed by adduct's size and interaction energies (stabilities). Mobility shifts of valinol and ethanolamine ions were measured by electrospray-ionization ion mobility-mass spectrometry (MS). Methyl-chloro propionate (M) was used as SR; 2-butanol (B) and nitrobenzene (N) were used for comparison. Density functional theory was used for calculations. B produced the smallest mobility shifts because of its small size. M and N have two strong interaction sites (oxygen atoms) and similar molecular mass, and they should produce similar shifts. For both ethanolamine and valinol ions, stabilities were larger for N adducts than those of M. With ethanolamine, M produced a 68% shift, large compared to that using N, 61%, because M has a third weak interaction site on the chlorine atom and, therefore, M has more interaction possibilities than N. This third site overrode the oxygen atoms' interaction energy that favored the adduction of ethanolamine with N over that with M. On the contrary, with valinol mobility shifts were larger with N than with M(21 vs 18%) because interaction energy favored even more adduction of valinol with N than with M; that is, the interaction energy difference between adducts of valinol with M and N was larger than that between those adducts with ethanolamine, and the third M interaction could not override this larger difference. Mobility shifts were explained based on the number of SR's interaction sites, size of ions and SR, and SR-ion interaction energies. This is the first time that the number of interaction sites is used to explain mobility shifts in SR-assisted IMS. Copyright (C) 2016 John Wiley & Sons, Ltd.
机译:重叠的峰会干扰离子迁移谱(IMS),但它们会分离,从而在缓冲气体中引入迁移率迁移试剂(SR),形成具有不同碰撞截面(大小)的加合物。使用SR的IMS分离取决于离子迁移率变化,离子迁移率变化取决于加合物的大小和相互作用能(稳定性)。缬氨醇和乙醇胺离子的迁移率变化通过电喷雾电离离子迁移率质谱(MS)进行测量。氯丙酸甲酯(M)用作SR;使用2-丁醇(B)和硝基苯(N)进行比较。密度泛函理论用于计算。 B的体积小,因此产生的迁移率变化最小。 M和N具有两个强相互作用位点(氧原子)和相似的分子质量,它们应产生相似的位移。对于乙醇胺和缬氨醇离子而言,N加合物的稳定性都比M高。对于乙醇胺,M产生68%的位移,与使用N相比,产生61%的位移,因为M在氯原子上具有第三个弱相互作用位点因此,M比N具有更多的相互作用可能性。该第三位取代了氧原子的相互作用能,与N相比,氧更有利于N与乙醇胺的加成。相反,N的缬氨酸迁移率移动大于M (21%vs 18%),因​​为与N相比,相互作用能更有利于缬氨醇与N的内加;也就是说,缬氨醇与M和N的加合物之间的相互作用能差大于与乙醇胺的加合物之间的相互作用能差,并且第三次M相互作用不能抵消该更大的差。根据SR相互作用位点的数量,离子和SR的大小以及SR离子相互作用能来解释迁移率变化。这是首次使用交互站点的数量来解释SR辅助IMS中的移动性变化。版权所有(C)2016 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号