...
首页> 外文期刊>Journal of hydrometeorology >Comparison of Modeled and Observed Accumulated Convective Precipitation in Mountainous and Flat Land Areas
【24h】

Comparison of Modeled and Observed Accumulated Convective Precipitation in Mountainous and Flat Land Areas

机译:山区和平地地区模拟和观测的累积对流降水的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Convective precipitation is the main cause of extreme rainfall events in small areas. Its primary characteristics are both large spatial and temporal variability. For this reason, the monitoring of accumulated precipitation fields (liquid and solid components) at the surface is difficult to carry out through the use of rain gauge networks or remote sensing observations. Alternatively, numerical models may be a useful tool to simulate convective precipitation for various analyses and predictions. This paper focuses on improving quantitative convective precipitation estimates that are obtained with a cloud-resolving model. This aim is attained by using the appropriate cloud drop size distribution and modified single sounding data. The authors perform comparisons between observations and three model samples of the areal-accumulated convective precipitation for a 15-yr period over mountainous and flat land areas with 45 and 29 convective events, respectively. They compare the results from a numerical cloud model that uses 2 different microphysical schemes-the unified Khrgian-Mazin size distribution of cloud drops-and an alternative scheme that is a combination of a monodispersed cloud droplet spectrum and the Marshall-Palmer size distribution for raindrops. The authors' statistical analysis shows that the model version with the Khrgian-Mazin size distribution and the new initial conditions better simulates the observed areal-accumulated convective precipitation than the alternative microphysical approach for both study areas. The model simulations with the Khrgian-Mazin size distribution most closely match observations for the flat land area with a correlation coefficient of 0.94, while it is somewhat lower (0.89) for the mountainous area. Use of the alternative microphysical approach, on the other hand, underestimates the observed precipitation, and has the lowest correlation coefficient among the methods, 0.82 for the mountainous area and 0.85 for the flat land.
机译:对流降水是小区域极端降雨事件的主要原因。它的主要特征是时空变异性大。因此,很难通过使用雨量计网络或遥感观测来监测地表的累积降水场(液体和固体成分)。或者,数值模型可能是模拟对流降水的各种分析和预测的有用工具。本文着重于改进利用云解析模型获得的定量对流降水估算。通过使用适当的云滴大小分布和修改后的单一探测数据,可以实现该目标。作者在山地和平坦土地上分别进行了45次和29次对流事件的15年期间,对面积累积的对流降水的观测值和三个模型样本进行了比较。他们比较了使用2种不同的微物理方案的数值云模型的结果-云滴的统一Khrgian-Mazin尺寸分布-另一种方案是将雨滴的单分散云滴谱和Marshall-Palmer尺寸分布组合在一起。作者的统计分析表明,与两个研究区域的替代微物理方法相比,具有Khrgian-Mazin尺寸分布和新的初始条件的模型版本可以更好地模拟观察到的面积累积对流降水。具有Khrgian-Mazin尺寸分布的模型模拟与平地地区的观测值最接近,相关系数为0.94,而山区的观测值则较低(0.89)。另一方面,使用替代的微物理方法低估了观测到的降水,并且在这些方法中相关系数最低,山区为0.82,平坦土地为0.85。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号