首页> 外文期刊>Journal of hydrometeorology >An Evaluation of Satellite Remote Sensing Data Products for Land Surface Hydrology: Atmospheric Infrared Sounder
【24h】

An Evaluation of Satellite Remote Sensing Data Products for Land Surface Hydrology: Atmospheric Infrared Sounder

机译:陆面水文卫星遥感数据产品评估:大气红外测深仪

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The skill of instantaneous Atmospheric Infrared Sounder (AIRS) retrieved near-surface meteorology, including surface skin temperature (T-s), air temperature (T-a), specific humidity (q), and relative humidity (RH), as well as model-derived surface pressure (P-surf) and 10-m wind speed (w), is evaluated using collocated National Climatic Data Center (NCDC) in situ observations, offline data from the North American Land Data Assimilation System (NLDAS), and geostationary remote sensing (RS) data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Such data are needed for RS-based water cycle monitoring in areas without readily available in situ data. The study is conducted over the continental United States and Africa for a period of more than 6 years (2002-08). For both regions, it provides for the first time the geographic distribution of AIRS retrieval performance. Through conditional sampling, attribution of retrieval errors to scene atmospheric and surface conditions is performed. The findings support previous assertions that performance degrades with cloud fraction and that (positive) bias enhances with altitude. In general AIRS is biased warm and dry. In certain regions, strong AIRS-NCDC correlation suggests that bias-driven errors, which can be substantial, are correctable. The utility of the error characteristics for prescribing the input-induced uncertainty of RS retrieval models is demonstrated through two applications: a microwave soil moisture retrieval algorithm and the Penman-Monteith evapotranspiration model. An important side benefit of this study is the verification of NLDAS forcing.
机译:瞬时大气红外测深仪(AIRS)检索近地表气象的技能,包括表面皮肤温度(Ts),空气温度(Ta),比湿(q)和相对湿度(RH)以及模型派生的表面使用并置的国家气候数据中心(NCDC)现场观测,来自北美土地数据同化系统(NLDAS)的离线数据以及对地静止遥感(P-surf)和10-m风速(w)进行评估RS)数据来自旋转增强型可见光和红外成像仪(SEVIRI)。在没有现成的现场数据的情况下,此类数据对于基于RS的水循环监测是必需的。该研究在美国和非洲大陆进行了超过6年的时间(2002-08)。对于这两个区域,它首次提供了AIRS检索性能的地理分布。通过条件采样,可以将获取误差归因于场景大气和地面条件。这些发现支持了先前的论断,即云层会降低性能,而高度会增强(正)偏差。通常,AIRS偏向温暖和干燥。在某些地区,强烈的AIRS-NCDC相关性表明,由偏差引起的误差(可以是实质性的)是可以纠正的。通过两个应用程序证明了误差特征对输入引起的RS反演模型不确定性的实用性:微波土壤水分反演算法和Penman-Monteith蒸散模型。这项研究的一个重要的附带好处是NLDAS强迫的验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号