...
首页> 外文期刊>Journal of hydrometeorology >Observed Land–Atmosphere Coupling from Satellite Remote Sensing and Reanalysis
【24h】

Observed Land–Atmosphere Coupling from Satellite Remote Sensing and Reanalysis

机译:卫星遥感与再分析观测到的陆-气耦合

获取原文
获取原文并翻译 | 示例
           

摘要

The lack of observational data for use in evaluating the realism of model-based land–atmosphere feedback signal and strength has been deemed a major obstacle to future improvements to seasonal weather prediction by the Global Land–Atmosphere Coupling Experiment (GLACE). To address this need, a 7-yr (2002–09) satellite remote sensing data record is exploited to produce for the first time global maps of predominant coupling signals. Specifically, a previously implemented convective triggering potential (CTP)–humidity index (HI) framework for describing atmospheric controls on soil moisture–rainfall feedbacks is revisited and generalized for global application using CTP and HI from the Atmospheric Infrared Sounder (AIRS), soil moisture from the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E), and the U.S. Climate Prediction Center (CPC) merged satellite rainfall product (CMORPH). Based on observations taken during an AMSR-E-derived convective rainfall season, the global land area is categorized into four convective regimes: 1) those with atmospheric conditions favoring deep convection over wet soils, 2) those with atmospheric conditions favoring deep convection over dry soils, 3) those with atmospheric conditions that suppress convection over any land surface, and 4) those with atmospheric conditions that support convection over any land surface. Classification maps are produced using both the original and modified frameworks, and later contrasted with similarly derived maps using inputs from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective Analysis for Research and Applications (MERRA). Both AIRS and MERRA datasets of CTP and HI are validated using radiosonde observations. The combinations of methods and data sources employed in this study enable evaluation of not only the sensitivity of the classification schemes themselves to their inputs, but also the uncertainty in the resultant classification maps. The findings are summarized for 20 climatic regions and three GLACE coupling hot spots, as well as zonally and globally. Globally, of the four-class scheme, regions for which convection is favored over wet and dry soils accounted for the greatest and least extent, respectively. Despite vast differences among the maps, many geographically large regions of concurrence exist. Through its ability to compensate for the latitudinally varying CTP–HI–rainfall tendency characteristics observed in this study, the revised classification framework overcomes limitations of the original framework. By identifying regions where coupling persists using satellite remote sensing this study provides the first observationally based guidance for future spatially and temporally focused studies of land–atmosphere interactions. Joint distributions of CTP and HI and soil moisture, rainfall occurrence, and depth demonstrate the relevance of CTP and HI in coupling studies and their potential value in future model evaluation, rainfall forecast, and/or hydrologic consistency applications.
机译:全球陆地-大气耦合实验(GLACE)认为,缺乏用于评估基于模型的陆地-大气反馈信号和强度的真实性的观测数据已成为未来改善季节性天气预报的主要障碍。为了满足这一需求,利用了7年(2002-09年)的卫星遥感数据记录,首次生成了主要耦合信号的全球地图。特别是,使用大气红外测深仪(AIRS)中的CTP和HI,重新讨论并推广了先前描述对流触发电位(CTP)-湿度指数(HI)框架以描述土壤水分-降雨反馈的大气控制方法,并在全球范围内推广应用地球观测系统的高级微波扫描辐射仪(EOS)(AMSR-E)和美国气候预测中心(CPC)合并了卫星降雨产品(CMORPH)。根据AMSR-E对流降雨季节的观察,全球土地面积可分为四种对流形式:1)大气条件有利于深对流而不是湿土; 2)大气条件有利于深对流而不干土壤; 3)具有抑制任何陆地对流的大气条件的土壤,以及4)具有支持任何陆地表面对流的大气条件的土壤。分类图是使用原始框架和经修改的框架生成的,后来与使用美国国家航空航天局(NASA)的现代时代研究和应用回顾性分析(MERRA)的输入与类似得出的图形成对比。 CRT和HI的AIRS和MERRA数据集均使用探空仪观测进行了验证。本研究中使用的方法和数据源的组合不仅可以评估分类方案本身对其输入的敏感性,还可以评估所得分类图的不确定性。总结了20个气候区域和3个GLACE耦合热点以及区域和全球的调查结果。在全球范围内,在四类方案中,对流优先于潮湿和干燥土壤的地区分别占最大和最小范围。尽管地图之间存在巨大差异,但仍然存在许多地理上较大的并发区域。通过其补偿本研究中观察到的横向变化的CTP-HI-降雨趋势特征的能力,修订后的分类框架克服了原始框架的局限性。通过使用卫星遥感方法确定耦合持续存在的区域,本研究为未来对土地-大气相互作用的时空聚焦研究提供了第一个基于观测的指导。 CTP和HI与土壤湿度,降雨发生和深度的联合分布证明了CTP和HI在耦合研究中的相关性及其在未来模型评估,降雨预报和/或水文一致性应用中的潜在价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号