...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America
【24h】

Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America

机译:全球及北美以下地区上地幔的径向各向异性剪切速度结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A surface wave dispersion data set of unprecedented size is used to obtain a variable-resolution model of the radially anisotropic shear wave velocity structure of the upper mantle beneath North America and globally. Love and Rayleigh wave phase velocities for periods in the range 35–150 s constrain a three-dimensional model of velocity variations on a length scale of a few hundred kilometers within the North American continent and a few thousand kilometers globally. The short- and long-wavelength models are determined simultaneously. Long-period surface wave phase velocities (200–350 s) are used to help constrain longer-wavelength and transition zone structure. Laterally varying velocity sensitivity kernels are used to account for the dependence of the velocity sensitivity on lateral variations in crust and mantle velocity structure. The sensitivity kernels are updated in several iterations to avoid nonlinearities associated with the inverse problem for the determination of mantle structure. Variations in isotropic velocity in the uppermost several hundred kilometers of the mantle are found to correlate well with surface tectonic features. Within the North American craton, the locations of strongest radial anisotropy generally correlate with the locations of fastest isotropic velocity. Variations in radial anisotropy show a clear continent-ocean signature. Strong anisotropy occurs at shallow depths (<100 km) under the continents, with a secondary peak found at a depth of ~200 km. Maximum anisotropy under the oceans occurs at a depth of ~125 km, with no secondary maximum. Combined interpretation of isotropic and anisotropic continent-ocean differences suggests a different role for the low-velocity zone under continental and oceanic regions.
机译:使用史无前例的大小的面波频散数据集来获得北美及全球下地幔径向各向异性剪切波速度结构的可变分辨率模型。在35-150 s范围内,Love和Rayleigh波的相位速度限制了速度变化的三维模型,该模型在北美大陆数百公里和全球数千公里的长度范围内。同时确定短波长和长波长模型。长周期的表面波相速度(200-350 s)用于帮助约束长波长和过渡带结构。横向变化的速度敏感性核用于解释速度敏感性对地壳和地幔速度结构的横向变化的依赖性。灵敏度内核经过多次迭代更新,以避免与反演问题相关的非线性,从而确定地幔结构。发现地幔最上层几百公里的各向同性速度变化与地表构造特征很好地相关。在北美克拉通内,径向各向异性最强的位置通常与各向同性速度最快的位置相关。径向各向异性的变化显示出明显的大陆-海洋特征。在各大洲下面的浅层深度(<100 km)中会出现强各向异性,在〜200 km的深度处会发现一个次要峰。海洋下的最大各向异性发生在〜125 km的深度,没有次要最大值。对各向同性和各向同性的大陆-海洋差异的综合解释表明,大陆和海洋区域下的低速带的作用不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号