首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Evaluation of instability in fractured rock masses using numerical analysis methods: Effects of fracture geometry and loading direction
【24h】

Evaluation of instability in fractured rock masses using numerical analysis methods: Effects of fracture geometry and loading direction

机译:使用数值分析方法评估裂隙岩体的不稳定性:裂隙几何形状和载荷方向的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical modeling, using two-dimensional distinct element methods, is used to examine the effect of stress on the stability of a fractured rock mass. The critical stress state depends on the differential stress, mean stress, and fluid pressure and is represented by a surface which bounds all stable stress states. By examining the critical stress states under different loading conditions it is possible to define the stability/instability in terms of the farfield differential stress and effective mean stress. Thus the strength of fractured rock can be represented by a macroscopic frictional component (mu (z)) and a cohesion (C-z), which differ from the corresponding parameters for individual fractures. A series of simulations are used to examine the effects of fracture network geometry, such as fracture density, fracture length, and fracture network anisotropy, on the instability strength. A steady decrease in equivalent frictional strength (mu (e)) with increasing fracture density was found. For the same fracture density, rock masses with fewer, but larger, fractures had lower instability strength. As networks became more anisotropic, the orientation of the fractures in relation to the loading direction had a considerable impact on the instability strength and deformation pattern. The effects of loading direction in relation to fracture set orientation have been examined for two fracture networks with different anisotropy coefficients. Where the directions of the principal stresses were parallel to the fracture sets, extensional deformation was observed. Otherwise, dilational shear deformation modes develop, within which sliding, opening, and block rotation occur. [References: 46]
机译:使用二维离散元方法进行数值模拟,以检查应力对裂隙岩体稳定性的影响。临界应力状态取决于压差,平均应力和流体压力,并由界定所有稳定应力状态的表面表示。通过检查不同载荷条件下的临界应力状态,可以根据远场微分应力和有效平均应力来定义稳定性/不稳定性。因此,裂隙岩石的强度可以用宏观摩擦分量(mu(z))和内聚力(C-z)表示,这与各个裂缝的相应参数不同。使用一系列模拟来检查裂缝网络几何形状(如裂缝密度,裂缝长度和裂缝网络各向异性)对不稳定性强度的影响。发现当量摩擦强度(mu(e))随断裂密度的增加而逐渐降低。对于相同的裂缝密度,裂缝较少但较大的岩体的失稳强度较低。随着网络变得越来越各向异性,裂缝相对于载荷方向的取向对不稳定性强度和变形模式有相当大的影响。对于具有不同各向异性系数的两个裂缝网络,已经研究了载荷方向相对于裂缝位置的影响。在主应力方向与裂缝位置平行的情况下,观察到拉伸变形。否则,会产生膨胀剪切变形模式,在其中发生滑动,打开和旋转。 [参考:46]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号