...
【24h】

Microbial Biofouling: A Mechanistic Investigation

机译:微生物生物污染:机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial biofouling is important in a variety of applications including reverse osmosis membranes and in-situ bioremediation. The initial microbial adhesion plays the key role in microbial biofouling on abiotic surfaces, which can be explained in terms of microbial surface properties. This research investigated the interactions of three indigenous bacteria with the porous medium of silica sand and their corresponding initial attachment. Traditional and extended DLVO forces were calculated based on independently measured bacterial and medium surface thermodynamic properties and were related to bacterial attachment observations. Lifshitz-van der Waals, electrostatic and Lewis acid/base forces were found to be strongly dependent on the separation distance between bacteria and the medium surface. It was concluded that the electrostatic force served as the barrier preventing the bacterial strains from getting close to the medium. Once the bacterial strains overcame the barrier with the aid of hydrodynamic forces, Lifshitz-van der Waals force and electrostatic force dropped while Lewis acid/base force increased with the decrease of separation distance. Consequently, Lewis acid/base force became the dominating force controlling bacterial adhesion.
机译:微生物生物污垢在包括反渗透膜和原位生物修复在内的各种应用中都很重要。最初的微生物粘附在非生物表面微生物生物结垢中起关键作用,这可以用微生物表面特性来解释。这项研究调查了三种本地细菌与硅砂多孔介质的相互作用及其相应的初始附着。传统的DLVO和扩展的DLVO力是根据独立测量的细菌和介质表面热力学性质计算得出的,并且与细菌附着观察结果有关。发现Lifshitz-van der Waals,静电力和路易斯酸/碱力在很大程度上取决于细菌和培养基表面之间的分离距离。可以得出结论,静电力是防止细菌菌株接近培养基的屏障。一旦细菌菌株借助流体动力克服了障碍,Lifshitz-van der Waals力和静电力就会下降,而路易斯酸/碱力会随着分离距离的减小而增加。因此,路易斯酸/碱力成为控制细菌粘附的主导力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号