...
首页> 外文期刊>Journal of Applied Geophysics >Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters
【24h】

Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters

机译:使用可调方向小波滤波器从二维GPR数据中检测和提取与方向和比例相关的信息

获取原文
获取原文并翻译 | 示例
           

摘要

The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets.This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale.In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.
机译:探地雷达(GPR)是用于近地表地质,岩土工程,工程,环境,考古和其他工作的宝贵工具。地下的GPR图像经常包含来自各种结构(例如层理,裂缝,裂缝等)的几何信息(恒定或可变倾角反射)。但是,它们通常不是良好的反射器,并且在时间和空间上高度局限。因此,它们的规模是显着影响其可检测性的因素。同时,GPR方法对掩埋的小物体产生的宽带噪声,电磁人为活动和系统因素非常敏感,这经常使目标的反射变得模糊。本文介绍了一种对GPR数据进行消噪并提取几何信息的方法基于一维B样条小波,二维定向B样条小波(BSW)滤波器和二维Gabor滤波器,从依赖于比例尺和倾角的结构特征中提取。定向BSW滤波器是通过将s个长度为L的相同一维小波在侧面排列,用合适的窗函数使s平行方向(跨度)逐渐变细并将结果矩阵旋转到所需方向来构建的。小波的长度L定义了要隔离的时间和空间尺度,跨度确定了要平滑的长度(空间分辨率)。伽柏滤波器是通过将椭圆高斯乘以复平面波而产生的。在任何方向上,要隔离的时间或空间尺度都由平面波的波长λ决定,而空间分辨率则由空间纵横比γ决定,而空间纵横比γ确定了Gabor函数的支持度的椭圆率。在任何方向上,可以通过分别改变长度或波长,在任何频率或空间波数下对两种类型的滤波器进行调谐。过滤器可以直接应用于二维雷达图,在这种情况下,它们会在给定方向上提取有关给定比例的信息。或者,可以在自适应控制下将它们旋转到不同的方向,以使它们在给定的频率或波数下保持调谐,并且可以在LS方向上堆叠结果图像,从而获得给定输入数据的完整表示除了隔离几何信息以进行进一步检查之外,建议的滤波方法还可以以特别适合GPR数据的方式用于提高信噪比,因为滤波器的频率响应模仿了GPR数据的频率特性。源小波。最后,信号衰减与时间定位密切相关:低衰减界面往往会产生丰富的高频反射,并随时间变化产生精细的定位。相反,高衰减界面会产生低频和宽广的局部反射。因此,可以利用滤波器​​的时间局部特性来研究信号传播的特性(因此具有材料特性)。该方法在从嘈杂数据中提取精细到粗略信息方面非常有效,并且已在考古和岩土勘测中应用于嘈杂GPR数据中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号