...
首页> 外文期刊>Journal of Applied Geophysics >A modeling solution for predicting (a) dry rock bulk modulus, rigidity modulus and (b) seismic velocities and reflection coefficients in porous, fluid-filled rocks with applications to laboratory rock samples and well logs
【24h】

A modeling solution for predicting (a) dry rock bulk modulus, rigidity modulus and (b) seismic velocities and reflection coefficients in porous, fluid-filled rocks with applications to laboratory rock samples and well logs

机译:一种预测(a)多孔流体填充岩石中的干岩石体积模量,刚度模量和(b)地震速度和反射系数的建模解决方案,并将其应用于实验室岩石样品和测井

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The velocity of sound in porous, fluid-saturated rocks can be predicted using the Biot-Geertsma-Gassmann (BGG) and shear-wave velocity equations. However, two of the needed input parameters, the bulk modulus (K_b) of the empty, porous rock and the shear modulus (#mu#) of the rock are very difficult to obtain in situ. In the past, these values were typically chosen a priori and input into the BGG and shear-wave equations in a forward modeling mode. In addition to K_b and #mu#, it is also essential to input rock-matrix and fluid parameters that reflect in situ conditions. In this paper, the BGG and shear-wave equations are inverted to generate values for K_b and #mu#, respectively, by using available velocity and porosity data obtained from well logs and/or cores for water/brine-saturated rocks. These values of K_b and #mu# along with reasonable in situ estimates of rock-matrix and fluid parameters generated from the Batzle-Wang [Batzle, M., Wang,Z., 1992. Seismic properties of pore fluids. Geophysics 57, 1396-1408.] formulation, are then used to predict compressional and shear-wave velocities, compressional-shear wave ratios, and reflection coefficients at the interfaces between host rocks and fluid-saturated rocks, either fully or partially saturated with hydrocarbons, as a function of depth and/or porosity. Although generally similar to the approach of Murphy et al. [Murphy, W.F., Reischer, A., Hsu, K., 1993. Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics 58, 227-239.], our method of inversion to determine K_b and #mu#, coupled with our input of in situ estimates of rock-matrix and fluid parameters as a function of depth from the Batzle-Wang formulation, forms a novel solution for predicting in situ velocities. A modeling program has been developed to perform these calculations and plot the velocity and reflection coefficient information as a function of depth, porosity, and water saturation. The resulting relationships between porous rock parameters provide valuable information for imaging and interpreting seismic data, interpreting well log data, aiding in the direct detection of subsurface fluids, and in developing reasonable models of the subsurface geology to assist with exploration and exploitation decisions. When our modeling program is applied to water-saturated reservoir rocks (sandstones and limestones) under controlled laboratory conditions, the percentage error between velocities predicted by our modeling program and values measured in the laboratory are topically less than 10% for both sandstone and limestone samples. When applied to well logs to predict sonic travel times and/or velocities for hydrocarbon-saturated rocks in the uninvaded formation, the predictions correlate with interpretations from other well logs and with hydrocarbon production from zones of interest.
机译:可以使用Biot-Geertsma-Gassmann(BGG)和剪切波速度方程式来预测多孔流体饱和岩石中的声速。但是,非常困难的两个输入参数,即空的多孔岩石的体积模量(K_b)和岩石的剪切模量(#mu#)很难就地获得。过去,通常先验地选择这些值,然后以正向建模模式将其输入到BGG和剪切波方程中。除了K_b和#mu#以外,还必须输入反映原位条件的岩石矩阵和流体参数。在本文中,通过使用从水/盐水饱和岩石的测井和/或岩心获得的可用速度和孔隙率数据,将BGG和剪切波方程式分别反演以生成K_b和#mu#的值。这些K_b和#mu#值,以及从Batzle-Wang [Batzle,M.,Wang,Z。,1992.孔隙流体的地震特性。然后使用地球物理学57,1396-1408。]公式来预测在部分或完全被碳氢化合物饱和的主岩和流体饱和岩之间的界面处的压缩波和剪切波速度,压缩剪切波比以及反射系数。 ,取决于深度和/或孔隙率。虽然通常与Murphy等人的方法相似。 [Murphy,W.F.,Reischer,A.,Hsu,K.,1993。在砂体中压缩和剪切速度的模量分解。地球物理58,227-239。],这是我们确定K_b和#mu#的反演方法,再加上我们根据Batzle-Wang公式对岩石矩阵和流体参数进行原位估计的深度函数,形成了一个预测原位速度的新颖解决方案。已经开发出一种建模程序来执行这些计算,并将速度和反射系数信息绘制为深度,孔隙率和水饱和度的函数。多孔岩石参数之间的结果关系为成像和解释地震数据,解释测井数据,帮助直接检测地下流体以及开发合理的地下地质模型提供了有价值的信息,以协助勘探和开发决策。当我们的建模程序在受控的实验室条件下应用于含水饱和的储集岩(砂岩和石灰石)时,我们的建模程序预测的速度与实验室测得的值之间的百分比误差对于砂岩和石灰石样品而言均小于10% 。当将其应用于测井以预测未侵入地层中含烃饱和岩石的声波传播时间和/或速度时,这些预测与其他测井的解释以及感兴趣区域的油气产量相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号