首页> 外文期刊>Turkish journal of chemistry >Partial regeneration of Ni-based catalysts for hydrogen production via methane cracking part II: modeling and optimization
【24h】

Partial regeneration of Ni-based catalysts for hydrogen production via methane cracking part II: modeling and optimization

机译:通过甲烷裂解制氢的镍基催化剂的部分再生第二部分:建模和优化

获取原文
获取原文并翻译 | 示例
           

摘要

High purity, carbon monoxide-free hydrogen and filamentous carbon can be produced by thermo-catalytic cracking of methane. Carbon filaments continue to grow until the catalyst deactivates because of carbon encapsulation. Regeneration of catalyst is important to maintain a continuous process. Our work on optimization of the partial regeneration method showed that activity of the catalyst can be sustained for longer times by gasifying not all but some extent of the deposited carbon. In the previous work, a kinetic model was developed to be able to understand the reaction mechanism of deactivation of fresh catalyst at the molecular level. The objective of this study was to develop a well-fitted kinetic model for deactivation of regenerated catalyst. A kinetic model that consists of surface reactions, filament formation, and deactivation was developed for the regenerated catalyst. It is assumed that reaction parameters at the molecular level do not change when the burn off degree is at a moderate extent but these parameters changed drastically when burn off degree is vastly increased or decreased. Rate constant for the encapsulation reaction is adjusted for the simulation results to be representative of the experimental results (typically specific weight of carbon (g C/g Ni) vs. time on stream). The system of differential algebraic equations consists of the steady-state equations for all surface intermediates, an algebraic equation of dissolution/segregation, diffusion equation, and the site balance equation. The system has been solved without assuming any rate-determining step or most abundant surface intermediates. Parameter estimation procedures were repeated: for the deactivation cycles of regenerated 5 wt% Ni/γ-Al2O3 catalyst. The basic idea that underlies the model is that every carbon atom will diffuse through the nickel particle and participate in the formation of carbon filaments until the catalyst deactivates. Specific weight of carbon is calculated using the rate of carbon diffusion.
机译:高纯度,不含一氧化碳的氢和丝状碳可通过甲烷的热催化裂化生产。碳丝继续生长,直到由于碳封装而使催化剂失活。催化剂的再生对于维持连续过程很重要。我们对部分再生方法的优化工作表明,通过对全部沉积碳进行一定程度的气化,可以使催化剂的活性维持更长的时间。在先前的工作中,开发了动力学模型以能够在分子水平上理解新鲜催化剂失活的反应机理。这项研究的目的是为失活的再生催化剂建立一个合适的动力学模型。建立了由表面反应,长丝形成和失活组成的动力学模型。假定当燃尽度处于中等程度时,分子水平的反应参数没有改变,但是当燃尽度大大增加或降低时,这些参数急剧变化。调整包封反应的速率常数以使模拟结果能够代表实验结果(通常是碳的比重(g C / g Ni)相对于生产时间)。微分代数方程组由所有表面中间体的稳态方程,溶解/离析的代数方程,扩散方程和位点平衡方程组成。解决该系统时无需采取任何决定速率的步骤或最丰富的表面中间体。重复参数估计程序:对于再生的5 wt%Ni /γ-Al2O3催化剂的失活循环。该模型的基本思想是,每个碳原子都会扩散穿过镍颗粒,并参与碳丝的形成,直到催化剂失活为止。碳的比重使用碳扩散速率来计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号