首页> 外文期刊>Pure and Applied Geophysics >Discretization Errors in the Hybrid Finite Element Particle-in-cell Method
【24h】

Discretization Errors in the Hybrid Finite Element Particle-in-cell Method

机译:混合有限元单元内粒子算法中的离散化误差

获取原文
获取原文并翻译 | 示例
           

摘要

In computational geodynamics, the Finite Element FE) method is frequently used. The method is attractive as it easily allows employment of body-fitted deformable meshes and a true free surface boundary condition. However, when a Lagrangian mesh is used, remeshing becomes necessary at large strains to avoid numerical inaccuracies (or even wrong results) due to severely distorted elements. For this reason, the FE method is oftentimes combined with the particle-in-cell (PIC) method, where particles are introduced which track history variables and store constitutive information. This implies that the respective material properties have to be interpolated from the particles to the integration points of the finite elements. In numerical geodynamics, material parameters (in particular the viscosity) usually vary over a large range. This may be due to strongly temperature-dependent rheologies (which result in large but smooth viscosity variations) or material interfaces (which result in viscosity jumps). Here, we analyze the accuracy and convergence properties of velocity and pressure of the hybrid FE-PIC method in the presence of large viscosity variations. Standard interpolation schemes (arithmetic and harmonic) are compared to a more sophisticated interpolation scheme which is based on linear least squares interpolation for two types of elements (Q_1P_0 and Q_2P_(-1)). In the case of a smooth viscosity field, the accuracy and convergence is significantly improved by the new interpolation scheme. In the presence of viscosity jumps, the order of accuracy is strongly decreased.
机译:在计算地球动力学中,经常使用有限元法。该方法具有吸引力,因为它可以轻松地使用适合身体的可变形网格和真正的自由表面边界条件。但是,当使用拉格朗日网格时,在大应变下必须重新网格化,以避免由于元素严重变形而导致数值不准确(甚至错误的结果)。因此,FE方法通常与单元中粒子(PIC)方法结合使用,其中引入了跟踪历史变量并存储本构信息的粒子。这意味着必须将相应的材料属性从粒子内插到有限元的积分点。在数值地球动力学中,材料参数(尤其是粘度)通常会在较大范围内变化。这可能是由于强烈依赖温度的流变(导致较大但平滑的粘度变化)或材料界面(导致粘度跳跃)引起的。在这里,我们分析了在存在较大粘度变化的情况下混合FE-PIC方法的速度和压力的准确性和收敛性。将标准插值方案(算术和谐波)与更复杂的插值方案进行比较,后者基于针对两种类型的元素(Q_1P_0和Q_2P _(-1))的线性最小二乘插值。在光滑的粘度场的情况下,新的插值方案显着提高了精度和收敛性。在存在粘度跳变的情况下,精度的阶数会大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号