首页> 外文期刊>Pure and Applied Geophysics >Applications of Directional Wavefield Decomposition, Phase Space, and Path Integral Methods to Seismic Wave Propagation and Inversion
【24h】

Applications of Directional Wavefield Decomposition, Phase Space, and Path Integral Methods to Seismic Wave Propagation and Inversion

机译:方向波场分解,相空间和路径积分方法在地震波传播和反演中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, de Hoop and coworkers developed an asymptotic, seismic inversion formula for application in complex environments supporting multi-pathed and multi-mode wave propagation (DE Hoop et al., 1999; DE Hoop and Brandsberg-Dahl, 2000; Stolk and DE Hoop, 2000). This inversion is based on the Born/Kirchhoff approximation, and employs the global, uniform asymptotic extension of the geometrical method of "tracting rays" to account for caustic phenomena. While this approach has successfully inverted the multicomponent, ocean-bottom data from the Valhall field in Norway, accounting for severe focusing effects (DE Hoop and Brandsberg-Dahl, 2000), it is not able to account properly for wave phenomena neglected in the "high-frequency" limit (i.e., diffraction effects) and strong scattering effects. To proceed further and incorporate wave effects in a nonlinear inversion scheme, the theory of directional wavefield decomposition and the construction of the generalized Bremmer coupling series are combined with the application of modern phase space and path (functional) integral methods to, ultimately, suggest an inversion algorithm which can be interpreted as a method of "tracing waves." This paper is intended to provide the seismic community with an introduction to these approaches to direct and inverse wave propagation and scattering, intertwining some of the most recent new results with the basic outline of the theory, and culminating in an outline of the extended, asymptotic, seismic inversion algorithm. Modeling at the level of the fixed-frequency (elliptic), scalar Helmholtz equation, exact and uniform asymptotic constructions of the well-known, and fundamentally important, square-root Helmholtz operator (symbol) provide the most important results.
机译:最近,de Hoop及其同事开发了一种渐近地震反演公式,用于支持多路径和多模波传播的复杂环境中(DE Hoop等人,1999; DE Hoop和Brandsberg-Dahl,2000; Stolk和DE Hoop ,2000)。此反演基于Born / Kirchhoff近似,并采用“牵引射线”几何方法的全局均匀渐近扩展来解决苛刻现象。尽管这种方法成功地反转了挪威Valhall油田的多分量海底数据,说明了严重的聚焦效应(DE Hoop和Brandsberg-Dahl,2000年),但它不能正确地解释“高频”限制(即衍射效应)和强散射效应。为了进一步进行并将波效应纳入非线性反演方案中,将方向波场分解理论和广义Bremmer耦合级数的构造与现代相空间和路径(功能)积分方法的应用相结合,最终提出了一种方法。反演算法,可以解释为“跟踪波”的方法。本文旨在为地震界提供有关这些直接和反向波传播和散射方法的介绍,将一些最新的结果与该理论的基本要点交织在一起,并最终形成一个扩展的渐近线概述,地震反演算法。在固定频率(椭圆形),标量Helmholtz方程的级别进行建模,最重要且最重要的平方根Helmholtz算符(符号)的精确且一致的渐近构造提供了最重要的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号