...
首页> 外文期刊>Precision Agriculture >Method for precision nitrogen management in spring wheat: I fundamental relationships
【24h】

Method for precision nitrogen management in spring wheat: I fundamental relationships

机译:春小麦精确氮素管理方法的基本关系

获取原文
获取原文并翻译 | 示例
           

摘要

Wheat (Triticum aestivum L.) fields in the semi-arid Northern Great Plains are spatially variable in soil N fertility and crop productivity. Consequently, there is interest in applying variable, rather than uniform rates of fertilizer N across the landscape. Intensive soil sampling as a basis for variable-rate fertilizer management is too costly when compared to the value of wheat in this region. The objective of this research was to determine relationships between yield and protein, and protein and available N as needed to develop a cost-effective variable-rate N fertilizer strategy for spring wheat. A three-year study (1996-1998) was carried out at a site near Havre, Montana, USA (48 deg 30 min N, 109 deg 22 min W). Treatments consisted of three water regimes, four cultivars, and five fertilizer N levels per water regime in a randomized complete block design with four replicates. Scatter diagrams of relative yield vs. grain protein were consistent with earlier investigators, and indicated protein concentrations at harvest provided a method for indexing N nutrition adequacy (deficiency vs. sufficiency) in wheat. A critical protein concentration of 13.2 percent was defined using a graphical Cate-Nelson analysis. This value appeared to be consistent across the three water regimes and four cultivars as 159 (88 percent) of the 180 water X cultivar X N level episodes were in positive quadrants. No correlation could be found between relative yield and protein for episodes below the critical level (r~2=0.1). Hence, grain protein concentrations could not be used to predict the magnitude of yield losses from N deficiency. Grain protein content would be useful for prescribing fertilizer recommendations where N deficiency (<13.2 percent protein) reduces grain yield under semi-arid conditions. Inverse slopes (dy/dx) of the protein-available N curves reveal that it takes 12-18 kg N/ha to change protein 1 percent (e.g., 12 percent vs. 13 percent) where wheat is under water stress during grain fill. The total N regquirement could then be computed by summing the N required for raising protein and the N removed by the crop in the year when the grain was harvested.
机译:在半干旱的北部大平原,小麦(Triticum aestivum L.)田地的土壤氮肥和作物生产力在空间上是可变的。因此,人们有兴趣在整个景观中施用可变的而不是均匀的肥料氮肥。与该地区小麦的价值相比,密集的土壤采样作为变量肥料管理的基础,成本太高。这项研究的目的是确定产量和蛋白质之间的关系,并根据需要确定蛋白质和可利用的氮,以开发一种经济有效的春小麦可变速率氮肥策略。在美国蒙大拿州阿弗尔附近的一个地点(北纬48度30分钟,西经109度22分钟)进行了为期三年的研究(1996年至1998年)。在随机的完整区组设计中,处理包括三个水处理方案,四个栽培品种和每个水处理方案五个肥料氮水平,重复四次。相对产量与谷物蛋白质的散点图与早期研究者一致,表明收获时的蛋白质浓度为索引小麦中的氮素营养充足性(不足与充足)提供了一种方法。使用图解Cate-Nelson分析确定临界蛋白质浓度为13.2%。该值似乎在三个供水方案和四个品种中保持一致,因为180个水X品种X N水平发作中的159个(88%)处于正象限。在低于临界水平(r〜2 = 0.1)的情况下,相对产量与蛋白质之间没有相关性。因此,谷物蛋白浓度不能用于预测氮缺乏造成的产量损失幅度。在半干旱条件下,氮素缺乏(蛋白质含量<13.2%)会降低谷物产量,谷物蛋白质含量可用于制定肥料建议。蛋白质可利用的N曲线的反斜率(dy / dx)表明,在灌浆过程中小麦处于水分胁迫下,改变1%的蛋白质(例如12%对13%)需要12-18 kg N / ha。然后可以通过将增加蛋白质所需的氮与收获谷物的那年被作物去除的氮相加来计算总氮需求量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号