...
首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >Hydrodynamic behaviors and mixing characteristics in an internal loop airlift reactor based on CFD simulation
【24h】

Hydrodynamic behaviors and mixing characteristics in an internal loop airlift reactor based on CFD simulation

机译:基于CFD模拟的内循环气举反应器的流体动力学行为和混合特性。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work aims to systematically study hydrodynamics and mixing characteristics in an internal airlift reactor using a computational approach. A 3D transient Eulerian-Eulerian multiphase model is carried out with the standard k-epsilon turbulence model, and the results are used to simulate a virtual tracer. Parameters of importance in the design of airlift reactors, such as the mixing time, circulation time, axial dispersion number, and axial dispersion coefficient, are presented in addition to basic hydrodynamic parameters, such as gas holdup and fluid velocities based on full 3D simulation. The effects of the superficial gas velocity, the downcomer diameter (A(r)/A(d)), H-I/d(r) ratio, and scaling up were investigated. The key observations were as follows. With increasing superficial gas velocity, the dispersion number increases, leading to more mixing. Increasing the downcomer area leads to lower dispersion number in the riser and consequently a more plug-flow-like behavior. A greater draft tube height causes a lower dispersion number but a higher dispersion coefficient due to a greater draft tube effect. Using a larger reactor with geometric similarity provides a higher dispersion number with more mixing because of reduced wall effect. In addition, correlations were proposed for gas holdup, circulation velocity, and dispersion coefficients for riser and downcomer. (C) 2016 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:这项工作旨在使用一种计算方法系统地研究内部气举反应堆中的流体动力学和混合特性。使用标准k-ε湍流模型进行了3D瞬态Eulerian-Eulerian多相模型,并将结果用于模拟虚拟示踪剂。除了基本的流体力学参数(例如基于全3D模拟的气体滞留率和流体速度)之外,还提出了在气举反应堆设计中重要的参数,例如混合时间,循环时间,轴向弥散数和轴向弥散系数。研究了表观气体速度,降液管直径(A(r)/ A(d)),H-I / d(r)比和放大的影响。主要观察结果如下。随着表观气体速度的增加,分散数增加,导致更多的混合。下降管面积的增加会导致上升管中的分散数降低,从而导致更像塞流的行为。较大的引流管高度导致较低的分散数,但由于较大的引流管效应而导致较高的分散系数。由于壁效应降低,使用具有几何相似性的较大反应器可提供更高的分散度和更多的混合。此外,还提出了气体滞留率,循环速度以及上升和下降管道的弥散系数之间的相关性。 (C)2016年化学工程师学会。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号