...
首页> 外文期刊>Physics of atomic nuclei >Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes
【24h】

Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes

机译:Fe同位素上的恒星电子和正电子捕获率的精细网格计算

获取原文
获取原文并翻译 | 示例
           

摘要

The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y_e) of the corematerial. It is suggested that the temporal variation of Y_e within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly ~(54-56)Fe, are considered to be key players in controlling Ye ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y_e ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on ~(54-56)Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.
机译:获得精确可靠的核数据是成功开展恒星演化和核合成研究的前提。核心坍缩模拟器发现,从大质量恒星核心坍缩产生爆炸具有挑战性。相信对核心塌陷的微观物理学有更好的了解可以导致成功的结果。弱相互作用过程能够触发坍塌并控制芯材的轻子与重子比率(Y_e)。有人认为,大质量恒星核心中Y_e的时间变化在恒星演化中起着举足轻重的作用,在超新星演化的各个阶段对该参数的微调是产生爆炸的关键。在超新星爆发前的大质量恒星演化过程中,主要是〜(54-56)Fe的铁同位素被认为是通过这些核素上的电子捕获来控制Ye比率的关键因素。最近,使用质子-中子准粒子随机相近似(pn-QRPA)理论引入了一种改进的微观计算方法,用于弱同位素介导的铁同位素速率。 pn-QRPA理论允许对恒星捕获率进行逐个微观状态的计算,从而大大提高了计算率的可靠性。这些结果表明,在恒星演化的各个阶段,Y_e比率都有一些微调。在这里,我们首次提出了〜(54-56)Fe上电子和正电子捕获率的精细网格计算。这项工作还研究了pn-QRPA计算的捕获率对变形参数的敏感性。核心崩溃模拟器可能会发现此计算适用于插值目的,并且有必要纳入恒星演化代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号