首页> 外文期刊>Solar Energy >Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)
【24h】

Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain)

机译:在安达卢西亚(西班牙南部)对WRF模型太阳辐照度预报的评估

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this work, we evaluate the reliability of three-days-ahead global horizontal irradiance (GHI) and direct normal irradiance (DNI) forecasts provided by the WRF mesoscale atmospheric model for Andalusia (southern Spain). GHI forecasts were produced directly by the model, while DNI forecasts were obtained based on a physical post-processing procedure using the WRF outputs and satellite retrievals. Hourly time resolution and 3 km spatial resolution estimates were tested against ground measurements collected at four radio-metric stations along the years 2007 and 2008. The evaluation was carried out independently for different forecast horizons (1,2 and 3 days ahead), the different seasons of the year and three different sky conditions: clear, cloudy and overcast. Results showed that the WRF model presents considerable skill in forecasting both GHI and DNI, overall, better than a trivial persistence model. Nevertheless, both MBE and RMSE values presented a marked dependence on the sky conditions and season of the year. Particularly, for 24 h lead time, the MBE of the forecasted GHI was 2% for clear-skies and 18% for cloudy conditions. However, the MBE of the forecasted DNI increased up to about 10% and 75% for clear and cloudy conditions, respectively. Regarding RMSE values, in the case of forecasted GHI, results ranged from below 10% under clear-skies to 50% for cloudy conditions. In the case of forecasted DNI, RMSE ranged from 20% to 100% for clear and cloudy skies, respectively. This proved the higher sensitivity of DNI to the sky conditions. In general, an increment of the MBE and RMSE values with the cloudiness was observed. This reflects a still limited ability of the WRF model to properly forecast cloudy conditions compared to clear skies. Nevertheless, the model was able to accurately forecast steep changes in the sky (cloudiness) conditions. Finally, WRF performed considerable better than the persistence model for clear skies both for GHI and DNI, with relative RMSE values about a half. However, for cloudy conditions, performance was similar.
机译:在这项工作中,我们评估了安达卢西亚(西班牙南部)的WRF中尺度大气模型提供的提前三天的全球水平辐照度(GHI)和直接法向辐照度(DNI)预报的可靠性。 GHI预报是由模型直接产生的,而DNI预报则是根据使用WRF输出和卫星检索的物理后处理程序获得的。针对在2007年和2008年期间在四个辐射测量站收集的地面测量结果,测试了时间分辨率和3 km空间分辨率估计值。评估是针对不同的预测范围(提前1,2和3天),不同的一年四季和三种不同的天空条件:晴朗,多云和阴天。结果表明,WRF模型在预测GHI和DNI方面总体表现出比普通的持久性模型更好的技巧。但是,MBE和RMSE值都明显取决于天空条件和一年中的季节。特别是在提前24小时的时间里,晴朗天空的预测GHI的MBE为2%,多云条件下的MBE为18%。但是,在晴朗和多云的情况下,预测DNI的MBE分别增加了约10%和75%。关于RMSE值,在预测的GHI情况下,结果范围从晴空下的10%以下到阴天的50%。对于预测的DNI,晴朗和多云天空的RMSE分别为20%至100%。这证明了DNI对天空条件的敏感性更高。通常,观察到MBE和RMSE值随着浑浊而增加。与晴朗的天空相比,这反映了WRF模型正确预测多云状况的能力仍然有限。尽管如此,该模型仍能够准确预测天空(多云)状况的急剧变化。最后,对于GHI和DNI而言,WRF的表现比持久模型好得多,相对RMSE值约为一半。但是,在多云的情况下,性能相似。

著录项

  • 来源
    《Solar Energy》 |2012年第8期|p.2200-2217|共18页
  • 作者单位

    Solar Radiation and Atmosphere Modeling Group, Department of Physics, University of Jam, Campus Lagunillas, 23071 Jaen, Andalusia, Spain;

    Solar Radiation and Atmosphere Modeling Group, Department of Physics, University of Jam, Campus Lagunillas, 23071 Jaen, Andalusia, Spain;

    Solar Radiation and Atmosphere Modeling Group, Department of Physics, University of Jam, Campus Lagunillas, 23071 Jaen, Andalusia, Spain;

    Solar Radiation and Atmosphere Modeling Group, Department of Physics, University of Jam, Campus Lagunillas, 23071 Jaen, Andalusia, Spain;

    Solar Radiation and Atmosphere Modeling Group, Department of Physics, University of Jam, Campus Lagunillas, 23071 Jaen, Andalusia, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GHI; DNI; forecasting; NWP; WRF; andalusia;

    机译:GHI;DNI;预测;NWP;WRF;安大路西亚;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号