...
首页> 外文期刊>Solar Energy >Production mechanism analysis of H-2 and CO via solar thermochemical cycles based on iron oxide (Fe3O4) at high temperature
【24h】

Production mechanism analysis of H-2 and CO via solar thermochemical cycles based on iron oxide (Fe3O4) at high temperature

机译:基于Fe3O4的高温太阳热化学循环过程中H-2和CO的生成机理分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the production mechanism analysis of H-2 and CO based on iron oxide was investigated. To deeply understand the reaction mechanism of the inner working of chemistry models, detailed chemical reaction mechanisms describing H-2 and CO formation were conceptually structured in a hierarchical manner with the assistance of reaction paths diagram. However, the main reaction pathways leading to syngas (H-2 and CO) formation derived from the conversion of H2O, CO2 and Fe(A). The study revealed that the reactivity of H, O, HO and HO2 in the reaction medium was crucial to determine syngas yield. The species reactivity in gas-Fe(A) reaction was limited by the rates of lattice oxygen extraction and diffusion from gas species to the iron bulk surface to replenish the extracted oxygen. However, the reaction paths diagram showed the main Fe(A) bulk phase of iron was not completely transformed to the fully oxidized Fe3O4 phase because of the restricted oxygen transfer to Fe(A) possibly. The model has indicated a better control of surface temperature and operating pressure could result in high reactivity of species in the reaction medium. Moreover, the combination analysis of Fe3O4 phase transformations and produced gas led to describe syngas production over several cycles of iron oxide redox reaction. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文研究了基于氧化铁的H-2和CO的生成机理。为了深入理解化学模型内部工作的反应机理,详细描述了描述H-2和CO生成的化学反应机理,并借助反应路径图以分层的方式进行了概念构建。但是,导致合成气(H-2和CO)形成的主要反应途径来自H2O,CO2和Fe(A)的转化。研究表明,反应介质中H,O,HO和HO2的反应性对于确定合成气的产量至关重要。气体-Fe(A)反应中的物种反应性受到晶格氧提取速率和从气体物种扩散到铁块表面以补充提取的氧气的速率的限制。但是,反应路径图显示,铁的主要Fe(A)本体相并未完全转变为完全氧化的Fe3O4相,因为可能会限制氧向Fe(A)的转移。该模型表明对表面温度和操作压力的更好控制可以导致反应介质中物种的高反应性。此外,对Fe3O4相变和产生的气体的组合分析导致描述了氧化铁氧化还原反应的多个循环中的合成气产生。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Solar Energy》 |2017年第5期|117-127|共11页
  • 作者单位

    Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 15001, Peoples R China;

    Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 15001, Peoples R China;

    Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 15001, Peoples R China;

    North China Univ Sci & Technol, Coll Met & Energy, 21 Bohai St, Tangshan 063009, Peoples R China;

    Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 15001, Peoples R China;

    Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 15001, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Iron oxide; Reaction mechanism; Species reactivity; Syngas yield; Reaction path; Lattice oxygen;

    机译:氧化铁;反应机理;物种反应性;合成气产率;反应路径;晶格氧;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号