...
首页> 外文期刊>Solar Energy >Solar photo-thermochemical reactor design for carbon dioxide processing
【24h】

Solar photo-thermochemical reactor design for carbon dioxide processing

机译:用于二氧化碳处理的太阳能光热化学反应器设计

获取原文
获取原文并翻译 | 示例
           

摘要

The direct use of solar energy for chemical processing, such as the synthesis of solar fuels, is an appealing alternative to mitigate environmental emissions while fulfilling the global demand for fuels. The design and evaluation of a direct solar receiver-reactor designed for gas-phase chemical synthesis is presented. The design rationale aims to promote concurrent gas-phase thermochemical and photochemical reactions below 1000 C. The stainless-steel reactor chamber is designed to act as a light trapping cavity to increase photon absorption and to induce long gas residence times through a porous catalytic monolith. The experimentally determined radiative flux distribution map from a high-flux solar simulator is used for the dimensioning of the reactor's optical aperture. Metal (Cu) catalytic monoliths, designed to have relatively large specific surface and adequate light transmission, are evaluated to determine their light attenuation characteristics and resistance to fluid flow. The designed reactor is evaluated with the direct decomposition of carbon dioxide (CO2). A computational fluid dynamics (CFD) model is used to analyze the reactor design and complement experimental evaluations. The model describes the gas flow throughout the chamber together with radiation transport and heterogeneous chemistry across the porous catalytic monolith. Experimental results are used for validation of the CFD model and to calibrate kinetic parameters of the heterogeneous chemical kinetics model. The findings indicate sub-optimal light transmission through the catalytic monolith given the rapid conversion of incident radiation into heat, and prompts to the need for co-optimization of the catalytic monolith's porous structure for light transmission and heterogeneous reactivity. The experimental results show a marked increase in CO2 reduction efficiency with increasing radiation flux but the CO2 decomposition with Cu catalyst is negligible at the tested temperatures. The reactor design methodology and evaluation can assist the devising of equipment and processes for the synergistic use of high-temperature photo- and thermo-catalysts to potentially allow CO2 conversion at lower temperatures than exclusively solar thermochemical processes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在满足全球燃料需求的同时,直接将太阳能用于化学加工(例如太阳能燃料的合成)是减少环境排放的一种有吸引力的选择。介绍了用于气相化学合成的直接太阳能接收器-反应器的设计和评估。该设计原理旨在促进低于1000 C的同时发生的气相热化学和光化学反应。不锈钢反应器腔室设计为充当光捕获腔,以增加光子吸收并通过多孔催化整体料诱导较长的气体停留时间。来自高通量太阳模拟器的实验确定的辐射通量分布图用于确定反应堆光学孔径的尺寸。设计具有相对大的比表面和足够的透光率的金属(Cu)催化整料,以确定其光衰减特性和对流体流动的阻力。通过直接分解二氧化碳(CO2)评估设计的反应器。计算流体动力学(CFD)模型用于分析反应堆设计并补充实验评估。该模型描述了整个腔室中的气流,以及穿过多孔催化整体结构的辐射传输和异质化学。实验结果用于验证CFD模型并校准非均相化学动力学模型的动力学参数。这些发现表明,如果将入射辐射迅速转换为热量,则通过催化整体结构的光传输将达到次优状态,这提示需要共同优化催化整体结构的多孔结构,以实现光传输和非均相反应性。实验结果表明,随着辐射通量的增加,CO2还原效率显着提高,但在测试温度下用Cu催化剂分解的CO2可以忽略不计。反应器的设计方法和评估可以协助设备和工艺的设计,以协同使用高温光催化剂和热催化剂,从而有可能在比仅使用太阳能热化学工艺更低的温度下转化CO2。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号