...
首页> 外文期刊>Solar Energy >Photo-thermochemical decomposition of carbon-dioxide in a direct solar receiver-reactor
【24h】

Photo-thermochemical decomposition of carbon-dioxide in a direct solar receiver-reactor

机译:直接太阳能接收器-反应器中二氧化碳的光热化学分解

获取原文
获取原文并翻译 | 示例
           

摘要

The synergistic combination of the spectral and intensity features of solar energy can potentially lead to chemical synthesis processes under milder temperature conditions than those in solar thermochemical processes. A direct solar receiver-reactor is built and used for the catalytic photo-thermochemical processing of carbon dioxide. The reactor is designed to be representative of field application solar reactors by depicting fluid flow, heat transfer, mass transport, and radiation transport effects, often suppressed in reactors aimed to fundamental chemical kinetics studies. Two different types of catalytic monoliths, tubular quartz and zirconia foam, are tested with coatings of 1 and 2 wt% Cu-doped TiO2. The zirconia foam monolith is optically thick and has more than four times higher coating mass compared to the tubular quartz monolith; nevertheless, the latter, while being optically thin, leads to four times higher CO production, with the 1 wt% coated monolith producing the highest CO yield. Moreover, the experimental results show that the CO production rate increases almost exponentially with increasing incident solar radiation flux. A computational fluid dynamics (CFD) model, describing fluid flow, radiation transport, and heterogeneous photo- and thermo-chemistry, is used to analyze the CO2 decomposition process in the 1 wt% tubular quartz reactor. The modeling results provide assessment of the photochemical and thermochemical effects, and suggest the synergistic enhancement due to the photolytic mechanism on the thermochemical process. Solar photo-thermochemical processing of CO2 using an optically and catalytically tuned catalytic monolith can lead to higher decomposition yields than photochemical processes, potentially comparable to those of solar thermochemical approaches while operating at lower temperatures.
机译:太阳能的光谱和强度特征的协同组合可能在比太阳能热化学过程温和的温度条件下导致化学合成过程。建造了直接太阳能接收器-反应器,并将其用于二氧化碳的催化光热化学处理。通过描绘流体流动,传热,传质和辐射传输效应,该反应堆被设计为代表现场应用的太阳能反应堆,而在通常针对基本化学动力学研究的反应堆中,该反应堆常常被抑制。测试了两种不同类型的催化整体材料,管状石英和氧化锆泡沫,分别使用1和2 wt%的Cu掺杂的TiO2涂层。氧化锆泡沫整料具有光学厚度,并且与管状石英整料相比涂层质量高出四倍以上。然而,后者虽然光学上很薄,但却导致CO的产量增加了四倍,其中1 wt%的涂层整料产生了最高的CO产量。此外,实验结果表明,CO生产率几乎随着入射太阳辐射通量的增加而呈指数增长。描述流体流动,辐射传输以及非均相光化学和热化学的计算流体动力学(CFD)模型用于分析1 wt%管状石英反应器中的CO2分解过程。建模结果提供了对光化学和热化学作用的评估,并暗示了由于热化学过程中的光解机理而产生的协同增强。与光化学过程相比,使用光学和催化调谐的催化整体进行太阳光热化学处理二氧化碳可导致更高的分解率,这可能与在较低温度下运行的太阳热化学方法相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号