...
首页> 外文期刊>Solar Energy >Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems
【24h】

Thermodynamic analysis of an integrated transcritical carbon dioxide power cycle for concentrated solar power systems

机译:集成太阳能发电系统跨临界二氧化碳功率循环的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates the thermodynamic performance, through energy and exergy efficiencies, of a conceptual design of a reheat transcritical carbon dioxide (T-CO2) power cycle for concentrated solar power (CSP) plants. Herein, a parabolic trough collector (PTC) solar field is used to harvest solar energy and provide the thermal energy to the T-CO2power cycle. Thermal energy storage (TES) is also integrated to overcome the intermittent nature of solar energy and maintain stable thermal energy supply to the power cycle. Furthermore, the T-CO2power cycle is integrated with an absorption refrigeration system (ARS) to enhance the cycle efficiency and production stability by sustaining low condensation temperature at various weather conditions. A parametric study through energy and exergy analyses is conducted considering the performance of each subsystem independently, and that of the overall integrated CSP. The energy and exergy efficiencies, thermal losses, and exergy destruction rates are evaluated under the different design and operating conditions for the T-CO2power cycle and the ARS. For example, the effects of variations in the maximum cycle temperature and pressure on both the power cycle’s energy and exergy efficiencies and integrated system efficiencies are investigated. In addition, the impacts of variations in these parameters on the integrated CSP energy and exergy efficiencies are examined. The T-CO2power cycle achieved energy and exergy efficiencies of 34% and 82%, respectively. The integrated CSP (solar-to-electric) energy and exergy efficiencies are about 20% and 55%, respectively.
机译:本文通过能量和火用效率研究了集中式太阳能发电厂(CSP)的再热跨临界二氧化碳(T-CO2)功率循环概念设计的热力学性能。在本文中,抛物槽收集器(PTC)太阳场用于收集太阳能并将热能提供给T-CO2功率循环。还集成了热能存储(TES),以克服太阳能的间歇性,并保持稳定的热能供应至功率循环。此外,T-CO2动力循环与吸收式制冷系统(ARS)集成在一起,通过在各种天气条件下维持较低的冷凝温度来提高循环效率和生产稳定性。通过能量和火用分析进行参数研究,要独立考虑每个子系统的性能以及整体集成CSP的性能。在T-CO2功率循环和ARS的不同设计和运行条件下,对能量和火用效率,热损失和火用破坏率进行了评估。例如,研究了最大循环温度和压力变化对功率循环的能量和火用效率以及集成系统效率的影响。此外,还检查了这些参数变化对综合CSP能量和火用效率的影响。 T-CO2动力循环分别实现了34%和82%的能源效率。 CSP(太阳能电)的综合能效和火用效率分别约为20%和55%。

著录项

  • 来源
    《Solar Energy》 |2018年第8期|557-567|共11页
  • 作者单位

    Department of Mechanical Engineering, College of Engineering and Islamic Architecture, Umm Al-Qura University,Faculty of Engineering and Applied Science, University of Ontario Institute of Technology;

    Faculty of Engineering and Applied Science, University of Ontario Institute of Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Energy; Exergy; Efficiency; Transcritical; Carbon dioxide; Rankine cycle; Solar energy;

    机译:能量;火用;效率;跨临界;二氧化碳;朗肯循环;太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号