...
首页> 外文期刊>Solar Energy >Efficient charge transport in surface engineered TiO_2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells
【24h】

Efficient charge transport in surface engineered TiO_2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells

机译:高效电荷输送在表面设计的TiO_2纳米颗粒光阳极导致量子点敏化太阳能电池中的性能提高

获取原文
获取原文并翻译 | 示例
           

摘要

Cold argon plasma treated TiO2 nanoparticulate photoanodes have been utilized for fabrication of quantum dot sensitized solar cells (QDSSCs). After plasma treatment the TiO2 nanoparticles got assembled in a closely spaced manner with increase in surface roughness factor owing to surface etching by the highly energetic ions, electron and radicals present in the plasma output. The photoanodes possess high inter-particle contact delivering fast charge carrier transport network minimizing the loss of charge carriers. The increase in conductivity was probed through conducting-AFM measurements. This morphological variation significantly inhibits the interfacial recombination by 3.5 times at the TiO2/NC/electrolyte interface as confirmed through electrochemical impedance spectroscopy. Moreover, the increase in Ti3+ as suggested by X-ray photoelectron spectroscopy also contributes in the enhancement of conductivity providing additional electron donor states. The power conversion efficiency increased from 3.65% to 5.01% for CdSe0.4S0.6 alloy nanocrystals (NCs) sensitized solar cells utilizing these plasma treated TiO2 photoanodes. Thus our strategy paves promising direction for the efficiency enhancements in QDSSC devices.
机译:已经使用冷氩等离子体处理的TiO2纳米颗粒光阳极用于制造量子点敏化太阳能电池(QDSSCs)。在等离子体处理之后,由于表面蚀刻通过等离子体输出中存在的高能离子,电子和自由基的表面蚀刻,TiO2纳米颗粒以紧密的方式组装在表面粗糙度因子的增加。光电池具有高颗粒间接接触,提供快速充电载波运输网络,最小化电荷载体的损失。通过进行AFM测量探测导电性的增加。这种形态学变化显着抑制通过电化学阻抗光谱证实的TiO2 / NC /电解质界面的界面重组3.5倍。此外,如X射线光电子能谱所示的Ti3 +的增加也有助于提供额外的电子给体状态的导电性的增强。功率转换效率从CDSE0.4S0.6合金纳米晶体(NCS)敏化太阳能电池的功率转换效率从3.65%增加到5.01%,利用这些等离子体处理的TiO2光电码。因此,我们的策略为QDSSC设备的效率增强铺平了有希望的方向。

著录项

  • 来源
    《Solar Energy》 |2019年第3期|195-202|共8页
  • 作者单位

    Bhabha Atom Res Ctr Radiat & Photochem Div Mumbai 400085 Maharashtra India|Savitribai Phule Pune Univ Dept Chem Pune 411007 Maharashtra India;

    Bhabha Atom Res Ctr Radiat & Photochem Div Mumbai 400085 Maharashtra India;

    Savitribai Phule Pune Univ Dept Chem Pune 411007 Maharashtra India;

    Bhabha Atom Res Ctr Radiat & Photochem Div Mumbai 400085 Maharashtra India;

    Bhabha Atom Res Ctr Radiat & Photochem Div Mumbai 400085 Maharashtra India;

    Savitribai Phule Pune Univ Dept Chem Pune 411007 Maharashtra India;

    Bhabha Atom Res Ctr Radiat & Photochem Div Mumbai 400085 Maharashtra India;

    Bhabha Atom Res Ctr Radiat & Photochem Div Mumbai 400085 Maharashtra India|Inst Nano Sci & Technol Mohali 160062 Punjab India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Quantum dots; Solar cell; Plasma treatment; Conductivity; Energy conversion;

    机译:量子点;太阳能电池;等离子体处理;电导率;能量转换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号