...
首页> 外文期刊>Solar Energy >Efficient charge transport in surface engineered TiO_2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells
【24h】

Efficient charge transport in surface engineered TiO_2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells

机译:表面工程化的TiO_2纳米微粒光阳极中的有效电荷传输,从而改善了量子点敏化太阳能电池的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Cold argon plasma treated TiO2 nanoparticulate photoanodes have been utilized for fabrication of quantum dot sensitized solar cells (QDSSCs). After plasma treatment the TiO2 nanoparticles got assembled in a closely spaced manner with increase in surface roughness factor owing to surface etching by the highly energetic ions, electron and radicals present in the plasma output. The photoanodes possess high inter-particle contact delivering fast charge carrier transport network minimizing the loss of charge carriers. The increase in conductivity was probed through conducting-AFM measurements. This morphological variation significantly inhibits the interfacial recombination by 3.5 times at the TiO2/NC/electrolyte interface as confirmed through electrochemical impedance spectroscopy. Moreover, the increase in Ti3+ as suggested by X-ray photoelectron spectroscopy also contributes in the enhancement of conductivity providing additional electron donor states. The power conversion efficiency increased from 3.65% to 5.01% for CdSe0.4S0.6 alloy nanocrystals (NCs) sensitized solar cells utilizing these plasma treated TiO2 photoanodes. Thus our strategy paves promising direction for the efficiency enhancements in QDSSC devices.
机译:冷氩等离子体处理的TiO2纳米微粒光阳极已用于制造量子点敏化太阳能电池(QDSSC)。经过等离子体处理后,由于等离子体输出中存在的高能离子,电子和自由基进行的表面蚀刻,TiO2纳米粒子以紧密间隔的方式组装,并且表面粗糙度系数增加。光电阳极具有高的粒子间接触,可提供快速的载流子传输网络,从而将载流子的损失降至最低。电导率的增加通过传导-AFM测量来探测。如通过电化学阻抗谱所证实的,这种形态变化显着抑制了TiO 2 / NC /电解质界面处的界面重组3.5倍。此外,X射线光电子能谱表明,Ti3 +的增加也有助于提高电导率,从而提供额外的电子供体态。使用这些等离子体处理的TiO2光电阳极的Cd​​Se0.4S0.6合金纳米晶体(NCs)敏化太阳能电池的功率转换效率从3.65%提高到5.01%。因此,我们的策略为提高QDSSC器件的效率开辟了有希望的方向。

著录项

  • 来源
    《Solar Energy》 |2019年第3期|195-202|共8页
  • 作者单位

    Bhabha Atom Res Ctr, Radiat & Photochem Div, Mumbai 400085, Maharashtra, India|Savitribai Phule Pune Univ, Dept Chem, Pune 411007, Maharashtra, India;

    Bhabha Atom Res Ctr, Radiat & Photochem Div, Mumbai 400085, Maharashtra, India;

    Savitribai Phule Pune Univ, Dept Chem, Pune 411007, Maharashtra, India;

    Bhabha Atom Res Ctr, Radiat & Photochem Div, Mumbai 400085, Maharashtra, India;

    Bhabha Atom Res Ctr, Radiat & Photochem Div, Mumbai 400085, Maharashtra, India;

    Savitribai Phule Pune Univ, Dept Chem, Pune 411007, Maharashtra, India;

    Bhabha Atom Res Ctr, Radiat & Photochem Div, Mumbai 400085, Maharashtra, India;

    Bhabha Atom Res Ctr, Radiat & Photochem Div, Mumbai 400085, Maharashtra, India|Inst Nano Sci & Technol, Mohali 160062, Punjab, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Quantum dots; Solar cell; Plasma treatment; Conductivity; Energy conversion;

    机译:量子点;太阳能电池;等离子处理;电导率;能量转换;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号