...
首页> 外文期刊>Solar Energy >Numerical simulation on the LSPR-effective core-shell copper/graphene nanofluids
【24h】

Numerical simulation on the LSPR-effective core-shell copper/graphene nanofluids

机译:LSPR有效核壳铜/石墨烯纳米流体的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Nanofluids, involving nanoparticles of the effective localized surface plasmon resonance (LSPR), exhibit the great enhancement in the light absorption and the heat transfer which activates many technological applications, especially covering solar thermal harvesting and photothermal therapy. In this paper, a numerical simulation method integrating classic electromagnetic wave optics, multiparticle group theory, heat transport and the Lambert-Beer's law was for the first time established via the finite element (FEM) method based on the COMSOL Multiphysics platform. The simulated optical and photothermal properties of both individual nanoparticle and its corresponding nanofluid revealed excellent LSPR-effectiveness in a variety of core-shell structured nano particles, and the simulation was verified by direct theoretical solution based on the Mie scattering and openly-sourced experiment results. Among of them, a core-shell structure nanoparticle with the copper core in diameter of 90 nm coated with 5 nm thickness graphene was found to be the most economical and effective in the photothermal performance within the solar spectrum. The photothermal performances of two-particle and eight particle models revealed that highly dispersed nanoparticles were more conducive to the overall temperature rise. The synergistic effect of LSPR-effective nanoparticles and far-IR absorption effective base solution enhanced the photothermal performance of nanofluids corresponding to copper/graphene core-shell nanoparticles. This research provided an efficient method to screen advanced LSRP-effective nanoparticle candidates and optimize the photothermal conversion of nanofluids for solar energy harvest.
机译:涉及有效局部表面等离子体共振(LSPR)的纳米粒子的纳米流体在光吸收和传热方面表现出极大的增强,从而激活了许多技术应用,特别是涵盖了太阳能集热和光热疗法。本文首次通过基于COMSOL Multiphysics平台的有限元(FEM)方法,建立了一种将经典电磁波光学,多粒子群论,热传输和朗伯-比尔定律相结合的数值模拟方法。单个纳米颗粒及其相应的纳米流体的模拟光学和光热性质显示了其在多种核壳结构纳米颗粒中的优异LSPR效果,并且基于Mie散射和公开的实验结果,通过直接理论解决方案对模拟进行了验证。 。在它们之中,发现在直径为90nm的铜核上涂有5nm厚度的石墨烯的核-壳结构纳米粒子在太阳光谱内的光热性能方面最经济,最有效。两粒子和八粒子模型的光热性能表明,高度分散的纳米粒子更有利于整体温度上升。 LSPR有效纳米粒子和远红外吸收有效基础溶液的协同效应增强了对应于铜/石墨烯核-壳纳米粒子的纳米流体的光热性能。这项研究提供了一种筛选先进的LSRP有效纳米颗粒候选物并优化用于太阳能收集的纳米流体的光热转化的有效方法。

著录项

  • 来源
    《Solar Energy》 |2019年第3期|439-451|共13页
  • 作者单位

    Western Kentucky Univ, Dept Chem, Inst Combust Sci & Environm Technol, Bowling Green, KY 42101 USA|Zhengzhou Univ, Key Lab Proc Heat Transfer & Energy Saving Henan, Zhengzhou 450002, Henan, Peoples R China;

    Western Kentucky Univ, Dept Chem, Inst Combust Sci & Environm Technol, Bowling Green, KY 42101 USA|Zhengzhou Univ, Key Lab Proc Heat Transfer & Energy Saving Henan, Zhengzhou 450002, Henan, Peoples R China;

    Western Kentucky Univ, Dept Chem, Inst Combust Sci & Environm Technol, Bowling Green, KY 42101 USA|Hangzhou Normal Univ, Dept Phys, Hangzhou 311121, Zhejiang, Peoples R China;

    Western Kentucky Univ, Dept Chem, Inst Combust Sci & Environm Technol, Bowling Green, KY 42101 USA|Anhui Univ, Coll Chem & Chem Engn, Hefei 230601, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanofluids; Core-shell nanoparticles; Copper; Graphene; Photothermal properties; Simulation;

    机译:纳米流体;核壳纳米粒子;铜;石墨烯;光热性能;模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号