首页> 外文期刊>Pure and Applied Geophysics >The Tsunami of 26 December, 2004: Numerical Modeling and Energy Considerations
【24h】

The Tsunami of 26 December, 2004: Numerical Modeling and Energy Considerations

机译:2004年12月26日的海啸:数值建模和能源考虑

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.
机译:由Kowalik等人构建的用于全球海啸计算的数值模型。 (2005年)适用于2004年12月26日世界海洋在80°S至69°N的海啸中,其空间分辨率为一分钟。由于计算域包括近2亿个网格点,因此开发了并行版本的代码,并在Cray X1超级计算机上运行。能量通量函数用于调查从海啸源到大西洋和太平洋的能量转移。尽管进入太平洋的第一批能源输入是主波(直接波),但来自斯里兰卡和马尔代夫东海岸的反射是一个较大的来源。海啸从印度尼西亚绕过新西兰,并通过各种路线进入太平洋。穿过深海直达北美的直接路径携带的能量微乎其微,而更强的信号则通过南太平洋海脊传播了更长的距离,因为这些测深特征放大了能量通量矢量。这些放大的能量通量的传播时间比第一波的到达时间长得多。这些大的通量在澳大利亚和南极洲之间传播时呈波浪状组织。较大通量的来源是塞舌尔,马尔代夫的多次反射和孟加拉湾的较慢直接信号。进入大西洋的能量通量显示出不同的模式,因为能量是通过源函数的方向特性泵入该域的。流入太平洋的能量约占流入大西洋的总能量的75%。在太平洋和大西洋沿岸的许多地方,第一个到达的信号(即先行信号)的幅度要比主信号的幅度低,而主信号的幅度通常要大得多。了解这种时间分布对于海啸预警和预测的应用很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号