首页> 外文期刊>Pure and Applied Geophysics >Breaking Up: Comminution Mechanisms in Sheared Simulated Fault Gouge
【24h】

Breaking Up: Comminution Mechanisms in Sheared Simulated Fault Gouge

机译:分手:剪切模拟断层泥中的粉碎机制

获取原文
获取原文并翻译 | 示例
           

摘要

The microstructural state and evolution of fault gouge has important implications for the mechanical behaviour, and hence the seismic slip potential of faults. We use 3D discrete element (DEM) simulations to investigate the fragmentation processes operating in fault gouge during shear. Our granular fault gouge models consist of aggregate grains, each composed of several thousand spherical particles stuck together with breakable elastic bonds. The aggregate grains are confined between two blocks of solid material and sheared under a given normal stress. During shear, the grains can fragment in a somewhat realistic way leading to an evolution of grain size, grain shape and overall texture. The ‘breaking up’ of the fault gouge is driven by two distinct comminution mechanisms: grain abrasion and grain splitting. The relative importance of the two mechanisms depends on applied normal stress, boundary wall roughness and accumulated shear strain. If normal stress is sufficiently high, grain splitting contributes significantly to comminution, particularly in the initial stages of the simulations. In contrast, grain abrasion is the dominant mechanism operating in simulations carried out at lower normal stress and is also the main fragmentation mechanism during the later stages of all simulations. Rough boundaries promote relatively more grain splitting whereas smooth boundaries favor grain abrasion. Grain splitting (plus accompanying abrasion) appears to be an efficient mechanism for reducing the mean grain size of the gouge debris and leads rapidly to a power law size distribution with an exponent that increases with strain. Grain abrasion (acting alone) is an effective way to generate excess fine grains and leads to a bimodal distribution of grain sizes. We suggest that these two distinct mechanisms would operate at different stages of a fault’s history. The resulting distributions in grain size and grain shape may significantly affect frictional strength and stability. Our results therefore have implications for the earthquake potential of seismically active faults with accumulations of gouge. They may also be relevant to the susceptibility of rockslides since non-cohesive basal shear zones will evolve in a similar way and potentially control the dynamics of the slide.
机译:断层泥的微观结构状态和演化对力学行为具有重要意义,因此也对断层的地震滑动潜力具有重要意义。我们使用3D离散元素(DEM)模拟来研究剪切过程中断层泥中的破碎过程。我们的颗粒状断层泥模型由聚集颗粒组成,每个聚集颗粒由数千个球形颗粒组成,这些颗粒通过易碎的弹性键粘结在一起。骨料颗粒被限制在两个固体材料块之间,并在给定的法向应力下被剪切。在剪切过程中,晶粒会以某种现实的方式破碎,从而导致晶粒尺寸,晶粒形状和整体质地的演变。断层泥的“破裂”是由两种不同的粉碎机制驱动的:颗粒磨损和颗粒分裂。这两种机制的相对重要性取决于所施加的法向应力,边界壁粗糙度和累积剪切应变。如果法向应力足够高,则晶粒分裂会极大地促进粉碎,特别是在模拟的初始阶段。相比之下,晶粒磨损是在较低法向应力下进行的模拟中运行的主要机制,也是所有模拟后期的主要破碎机制。粗糙的边界促进了相对更多的晶粒分裂,而光滑的边界则有利于晶粒磨损。晶粒分裂(加上伴随的磨损)似乎是减少切屑残渣平均晶粒尺寸的有效机制,并迅速导致幂律尺寸分布,其指数随应变而增加。磨粒(单独作用)是产生多余细晶粒并导致晶粒尺寸双峰分布的有效方法。我们建议这两种不同的机制将在故障历史的不同阶段起作用。所得的晶粒尺寸和形状分布会显着影响摩擦强度和稳定性。因此,我们的结果对具有堆积物的地震活动断层的地震潜力具有影响。它们也可能与岩石滑坡的敏感性有关,因为非粘性的基础剪切带将以类似的方式演化并可能控制滑坡的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号