首页> 外文期刊>Pure and Applied Geophysics >Insights into the Crustal Structure and Geodynamic Evolution of the Southern Granulite Terrain, India, from Isostatic Considerations
【24h】

Insights into the Crustal Structure and Geodynamic Evolution of the Southern Granulite Terrain, India, from Isostatic Considerations

机译:基于等静压因素的印度南部花岗岩颗粒地壳结构和地球动力学演化

获取原文
获取原文并翻译 | 示例
           

摘要

The Southern Granulite Terrain of India, formed through an ancient continental collision and uplift of the earth’s surface, was accompanied by thickening of the crust. Once the active tectonism ceased, the buoyancy of these deep crustal roots must have supported the Nilgiri and Palani-Cardamom hills. Here, the gravity field has been utilized to provide new constraints on how the force of buoyancy maintains the state of isostasy in the Southern Granulite Terrain. Isostatic calculations show that the seismically derived crustal thickness of 43–44 km in the Southern Granulite Terrain is on average 7–8 km more than that required to isostatically balance the present-day topography. This difference cannot be solely explained applying a constant shift in the mean sea level crustal thickness of 32 km. The isostatic analysis thus indicates that the current topography of the Southern Granulite Terrain is overcompensated, and about 1.0 km of the topographic load must have been eroded from this region without any isostatic readjustment. The observed gravity anomaly, an order of magnitude lower than that expected (−125 mGal), however, shows that there is no such overcompensation. Thermal perturbations up to Pan-African, present-day high mantle heat flow and low Te together negate the possible resistance of the lithosphere to rebound in response to erosional unloading. To isostatically compensate the crustal root, compatible to seismic Moho, a band of high density (2,930 kg m−3) in the lower crust and low density (3,210 kg m−3) in the lithospheric mantle below the Southern Granulite Terrain is needed. A relatively denser crust due to two distinct episodes of metamorphic phase transitions at 2.5 Ga and 550 Ma and highly mobilized upper mantle during Pan-African thermal perturbation reduced significantly the root buoyancy that kept the crust pulled downward in response to the eroded topography.
机译:印度南部的花岗石地形是由古老的大陆碰撞和地表隆升形成的,地壳变厚。一旦活跃的构造运动停止,这些深厚的地壳根的浮力一定已经支撑了尼尔吉里山和帕拉尼-豆蔻山。在这里,重力场已被用来对浮力如何保持南部花岗岩颗粒地形的等静状态提供新的约束。等静压计算表明,南部花岗岩地区的地震衍生地壳厚度平均为43–44 km,比均衡平衡当今地形所需的地壳厚度平均多7–8 km。这种差异不能仅通过平均海平面地壳厚度32 km的恒定变化来解释。因此,等静压分析表明,南部花岗石地形的当前地形已被过度补偿,并且必须在没有任何等静压调整的情况下从该区域侵蚀掉约1.0 km的地形载荷。观测到的重力异常,比预期的低一个数量级(-125 mGal),表明没有这种过度补偿。直至泛非的热扰动,当今的高地幔热流和低Te共同抵消了岩石圈抵抗侵蚀卸载而可能反弹的阻力。为了等静地补偿与地震莫霍面相适应的地壳根,下部地壳中的高密度带(2,930 kg m-3 )和岩石圈地幔中的低密度(3210 kg m-3 )下面需要南部花岗岩。由于在2.5 Ga和550 Ma发生了两个明显的变质相变事件,并且在泛非热扰动中上地幔活动性强,因此地壳相对致密,从而显着降低了根部浮力,使浮力保持了地壳因地形受到侵蚀而向下拉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号