...
首页> 外文期刊>Proceedings of the IEEE >Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems
【24h】

Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems

机译:用于构建自主认知系统的神经形态电子电路

获取原文
获取原文并翻译 | 示例
           

摘要

Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions forfast simulations of spiking neural networks. While these architectures are useful for exploring the computationalproperties of large-scale models of the nervous system, the challenge of building low-power compact physical artifactsthat can behave intelligently in the real world and exhibit cognitive abilities still remains open. In this paper, wepropose a set of neuromorphic engineering solutions to address this challenge. In particular, we review neuromorphiccircuits for emulating neural and synaptic dynamics in real time and discuss the role of biophysically realistictemporal dynamics in hardware neural processing architectures; we review the challenges of realizing spike-basedplasticity mechanisms in real physical systems and present examples of analog electronic circuits that implement them;we describe the computational properties of recurrent neural networks and show how neuromorphic winner-take-all circuitscan implement working-memory and decision-making mechanisms. We validate the neuromorphic approach proposed withexperimental results obtained from our own circuits and systems, and argue how the circuits and networks presented inthis work represent a useful set of components for efficiently and elegantly implementing neuromorphiccognition.
机译:最近已经提出了几种模拟和数字大脑启发的电子系统,作为用于尖峰神经网络快速仿真的专用解决方案。尽管这些体系结构对于探索神经系统大规模模型的计算特性很有用,但构建低功耗,紧凑的物理工件的挑战仍然存在,而这些工件在现实世界中可以智能地表现并具有认知能力。在本文中,我们提出了一组神经形态工程解决方案来应对这一挑战。特别是,我们回顾了用于实时模拟神经和突触动力学的神经形态电路,并讨论了生物物理现实时空动力学在硬件神经处理体系结构中的作用;我们回顾了在实际物理系统中实现基于峰值的可塑性机制的挑战,并提出了实现它们的模拟电子电路的示例;我们描述了递归神经网络的计算特性,并展示了神经形态赢家通吃电路如何实现工作记忆和决策制机制。我们用从我们自己的电路和系统获得的实验结果验证了提出的神经形态学方法,并论证了这项工作中呈现的电路和网络如何代表一组有效而优雅地实现神经形态认知的有用组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号