...
首页> 外文期刊>Nuclear fusion >Effect of resonant and non-resonant magnetic braking on error field tolerance in high beta plasmas
【24h】

Effect of resonant and non-resonant magnetic braking on error field tolerance in high beta plasmas

机译:共振和非共振磁制动对高β等离子体中误差场容差的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Tokamak plasmas become less tolerant to externally applied non-axisymmetric magnetic 'error' fields as beta increases, due to a resonant interaction of the non-axisymmetric field with a stable n = 1 kink mode. Similar to observations in low beta plasmas, the limit to tolerable n = 1 magnetic field errors in neutral beam injection heated H-mode plasmas is seen as a bifurcation in the torque balance, which is followed by error field-driven locked modes and severe confinement degradation or a disruption. The error field tolerance is, therefore, largely determined by the braking torque resulting from the non-axisymmetric magnetic field. DIII-D experiments distinguish between a resonant-like torque, which decreases with increasing rotation, and a non-resonant-like torque, which increases with increasing rotation. While only resonant braking leads to a rotation collapse, modelling shows that non-resonant components can lower the tolerance to resonant components. The strong reduction of the error field tolerance with increasing beta, which has already been observed in early high beta experiments in DIII-D (La Haye et al 1992 Nucl. Fusion 32 2119), is linked to an increasing resonant field amplification resulting from a stable kink mode (Boozer 2001 Phys. Rev. Lett. 86 5059). The amplification of externally applied n = 1 fields is measured with magnetic pick-up coils at normalized beta values as low as 1 and seen to increase with beta. The rate at which the amplification increases with beta becomes larger above the no-wall ideal MHD stability limit, where kinetic effects stabilize the resistive wall mode. The extent of the beta dependence and its importance for low torque scenarios was not previously appreciated, and was not included in the empirical scaling of the error field tolerance for ITER. which focused on the lowest density phase of a discharge prior to H-mode access (Buttery el al 1999 Nucl. Fusion 39 1827, 1999 ITER Physics Basis Nucl. Fusion 39 2137). However, the measurable increase in the plasma response with beta can be exploited for 'dynamic' correction (i.e. with slow magnetic feedback) of the amplified error field.
机译:由于非轴对称磁场与稳定的n = 1扭结模式的共振相互作用,随着β值的增加,托卡马克等离子体对外部施加的非轴对称磁场“误差”的容忍度降低。与在低β等离子体中观察到的相似,在中性束注入加热的H型等离子体中,可容忍的n = 1磁场误差的极限被视为扭矩平衡的分叉点,随后是由误差场驱动的锁定模式和严格的限制退化或破坏。因此,误差场公差在很大程度上取决于由非轴对称磁场产生的制动转矩。 DIII-D实验区分了随旋转增加而减小的类似共振转矩和随旋转增加而增加的非谐振类似转矩。虽然只有共振制动会导致旋转崩溃,但建模显示非共振组件会降低对共振组件的公差。在DIII-D中早期的高β实验中已经观察到,随着β的增加,误差场容忍力的强烈降低(La Haye等人,1992 Nucl。Fusion 32 2119)与增加的共振场放大率有关。稳定的扭结模式(Boozer 2001 Phys。Rev. Lett。86 5059)。外部施加的n = 1场的放大率是通过磁拾取线圈在归一化的beta值低至1的情况下测量的,并且看到随着beta的增加而增加。随β增大的放大速率在无壁理想MHD稳定性极限以上变大,其中动力学效应稳定了电阻壁模式。 β依赖性的程度及其在低扭矩情况下的重要性以前并未被认识到,并且没有包括在ITER误差场公差的经验标度中。其中重点介绍了在进入H模式之前放电的最低密度阶段(Buttery等,1999,核酸融合39 1827,1999 ITER物理基础,核酸融合39 2137)。但是,可以利用可测量的等离子体响应的增加来对放大的误差场进行“动态”校正(即,利用缓慢的磁反馈)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号