首页> 外文期刊>Modeling, Identification and Control >Nonlinear Time-Domain Strip Theory Formulation for Low-Speed Manoeuvring and Station-Keeping
【24h】

Nonlinear Time-Domain Strip Theory Formulation for Low-Speed Manoeuvring and Station-Keeping

机译:低速机动和保管的非线性时域带状理论公式

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a computer effective nonlinear time-domain strip theory formulation for dynamic positioning (DP) and low-speed manoeuvring. Strip theory or 2D potential theory, where the ship is divided in 20 to 30 cross sections, can be used to compute the potential coefficients (added mass and potential damping) and the exciting wave loads (Froude-Krylov and diffraction forces). Commercially available programs are ShipX (VERES) by Marintek (Fathi, 2004) and SEAWAY by Amarcon (Journee & Adegeest, 2003), for instance. The proposed method can easily be extended to utilize other strip theory formulations or 3-D potential programs like WAMIT (2004). The frequency dependent potential damping, which in classic theory results in a convolution integral not suited for real-time simulation, is compactly represented by using the state-space formulation of Kristiansen & Egeland (2003). The separation of the vessel model into a low-frequency model (represented by zero-frequency added mass and damping) and a wave-frequency model (represented by motion transfer functions or RAOs), which is commonly used for simulation, is hence made superfluous. Transformations of motions and coefficients between different coordinate systems and origins, i.e. data frame, hydrodynamic frame, body frame, inertial frame etc., are put into the rigid framework of Fossen (1994, 2002). The kinematic equations of motion are formulated in a compact nonlinear vector representation and the classical kinematic assumption that the Euler angles are small is removed. This is important for computation of accurate control forces at higher roll and pitch angles. The hydrodynamic forces in the steadily translating hydrodynamic reference frame (equilibrium axes) are, however, assumed to be linear. Recipes for computation of retardation functions are presented and frequency dependent viscous damping is included. Emphasis is placed on numerical computations and representation of the data from VERES and SEAWAY in Matlab/Simulink. For this purpose a Simulink add-in to the Marine Systems Simulator (MSS) at the Norwegian University of Science and Technology has been developed (Fossen et al., 2004).
机译:本文提出了一种用于动态定位(DP)和低速操纵的计算机有效的非线性时域带状理论公式。条形理论或2D势能理论将船划分为20至30个横截面,可用于计算势能系数(附加质量和势能阻尼)和激发波载荷(弗劳德-克雷洛夫和衍射力)。例如,商业上可用的程序是Marintek的ShipX(VERES)(Fathi,2004年)和Amarcon的SEAWAY(Journee&Adegeest,2003年)。所提出的方法可以轻松地扩展为利用其他带状理论公式或3-D潜在程序,例如WAMIT(2004)。频率相关的电位阻尼在经典理论中导致不适合实时仿真的卷积积分,使用Kristiansen&Egeland(2003)的状态空间公式来紧凑地表示。因此,将容器模型分为通常用于仿真的低频模型(由零频率附加质量和阻尼表示)和波频率模型(由运动传递函数或RAO表示)分离是多余的。将不同坐标系和原点(即数据框架,流体动力框架,车身框架,惯性框架等)之间的运动和系数的转换放入Fossen(1994,2002)的刚性框架中。运动的运动学方程式以紧凑的非线性矢量表示形式表示,并且删除了欧拉角较小的经典运动学假设。这对于在较大的侧倾角和俯仰角处计算精确的控制力很重要。但是,假定平稳移动的水力参考系(平衡轴)中的水力是线性的。提出了用于计算延迟函数的食谱,并包括了随频率变化的粘性阻尼。重点放在Matlab / Simulink中VERES和SEAWAY的数值计算和数据表示上。为此,已经开发了挪威科技大学海洋系统模拟器(MSS)的Simulink插件(Fossen等,2004)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号