...
首页> 外文期刊>IEEE / ASME Transactions on Mechatronics >Electrophoresis-Based Adaptive Manipulation of Nanowires in Fluid Suspension
【24h】

Electrophoresis-Based Adaptive Manipulation of Nanowires in Fluid Suspension

机译:纳米线在流体悬架中的基于电泳的自适应操纵

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Automated, highly precise online manipulation of nanoscale and microscale objects is essential to achieve scalable nanomanufacturing. However, nanoparticles and microparticles exhibit as yet unpredictable and, therefore, uncontrolled variations in their structures or compositions that can limit their functions and properties. In this article, we present an electric field-based adaptive manipulation scheme to precisely control the motion of individual nanowires, online estimate their unknown mobilities, and rapidly plan the desired trajectories with the estimated mobilities. The input saturation is considered in the adaptive controller, and the closed-loop system is proved to be asymptotically stable. The proposed motion planners (MPs), Bi-iSSTs, are built on and extended by the stable sparse rapidly exploring random tree (SST)-based kinodynamic motion-planning algorithms. Two sparse trees are maintained to increase the probability of finding a solution. The Bi- iSST algorithms use the workspace information, heuristics, and optimization to effectively guide the search process. When compared with the state-of-the-art algorithms, a Bi-iSST variant, the opt-Bi-iSST algorithm, quickly updates feasible solutions with the online estimated mobilities of multiple nanowires and converges to a nearoptimal, minimum-time solution to increase the efficiency of simultaneous manipulation of the nanowires. Therefore, without complex characterization of each nanowire's mobility, the nanowires can be steered simultaneously and efficiently to achieve precisely controlled positions without collisions. Simulation and experimental results confirm that the proposed integrated adaptive manipulation scheme precisely, independently, and simultaneously manipulates the motion of multiple nanowires.
机译:自动化,高度精确的纳米级和微观物体的在线操纵对于实现可扩展的纳米构造至关重要。然而,纳米颗粒和微粒表现出尚未预测的,因此,可以限制其功能和性质的结构或组合物中的不受控制的变化。在本文中,我们提出了一种基于电场的自适应操作方案,以精确地控制各个纳米线的运动,在线估计其未知司,并迅速计划具有估计迁移率的所需轨迹。在自适应控制器中考虑输入饱和度,并证明闭环系统被渐近稳定。所提出的议案规划师(MPS),双issts,由稳定的稀疏探索随机树(SST)基于Kinodynamic Motion-Planning算法构建和延伸。保持两个稀疏的树木以增加找到解决方案的可能性。 Bi-ISST算法使用工作空间信息,启发式和优化来有效地指导搜索过程。与最先进的算法相比,双ISST变体,选择性算法,随着多个纳米线的在线估计迁移率并收敛到近外最小时间的解决方案,快速更新可行的解决方案提高纳米线同时操纵的效率。因此,没有每个纳米线的迁移率的复杂表征,纳米线可以同时和有效地转向,以在没有碰撞的情况下实现精确控制的位置。仿真和实验结果证实,所提出的综合自适应操纵方案精确地独立地和同时操纵多个纳米线的运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号