...
首页> 外文期刊>The International journal of robotics research >A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance
【24h】

A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance

机译:基于蝇蝗的神经元控制系统,应用于无人飞行器:无脊椎动物神经元原理,用于航向稳定,高度控制和避免碰撞

获取原文
获取原文并翻译 | 示例
           

摘要

The most versatile and robust flying machines are still those produced by nature through evolution. The solutions to the 6 DOF control problem faced by these machines are implemented in extremely small neuronal structures comprising thousands of neurons. Hence, the biological principles of flight control are not only very effective but also efficient in terms of their implementation. An important question is to what extent these principles can be generalized to man-made flying platforms. Here, this question is investigated in relation to the computational and behavioral principles of the opto-motor system of the fly and locust. The aim is to provide a control infrastructure based only on biologically plausible and realistic neuronal models of the insect opto-motor system. It is shown that relying solely on vision, biologically constrained neuronal models of the fly visual system suffice for course stabilization and altitude control of a blimp-based UAV. Moreover, the system is augmented with a collision avoidance model based on the Lobula Giant Movement Detector neuron of the Locust. It is shown that the biologically constrained course stabilization model is highly robust and that the combined model is able to perform autonomous indoor flight.
机译:最通用,最强大的飞行器仍然是自然界通过进化而生产的那些。这些机器面临的6自由度控制问题的解决方案是在包含数千个神经元的极小的神经元结构中实现的。因此,飞行控制的生物学原理不仅非常有效,而且在其实施方面也非常有效。一个重要的问题是这些原理在多大程度上可以推广到人造飞行平台上。在这里,这个问题与苍蝇和蝗虫的光电机系统的计算和行为原理有关。目的是提供仅基于昆虫光动力系统生物学上合理的和现实的神经元模型的控制基础设施。结果表明,仅依靠视觉,飞行视觉系统的生物学约束神经元模型就足以实现基于飞艇的无人机的航向稳定和高度控制。此外,该系统还增加了基于蝗虫Lobula Giant Movement Detector神经元的碰撞避免模型。结果表明,生物约束航向稳定模型具有很高的鲁棒性,并且该组合模型能够执行自主的室内飞行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号