...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers
【24h】

Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers

机译:开发高频压电复合超声阵列换能器的微加工技术

获取原文
获取原文并翻译 | 示例
           

摘要

Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 ?????? 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of -C;60 MHz. The 2-D array elements are 105 ?????? 105 ;C;m in size with 5-;C;m kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-;C;m kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 ;C;m and an average gap width of -C;4 ;C;m, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of -C;60 MHz was achieved and the -6-dB bandwidth of the received signal was -C;50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements.
机译:本文介绍了几种用于制造高频压电复合超声阵列换能器的微加工技术。各种不同的技术用于对有源压电材料进行构图,将背衬材料连接到换能器以及组装电子互连板以进行阵列的发送和接收。为了确定工艺流程的可行性,一种混合​​测试超声阵列换能器,该换能器由一个二维阵列组成,该二维阵列具有一个8英寸的阵列。设计,制作和评估了8个元素的图案和5个元素的环形阵列。阵列设计用于-C; 60 MHz的中心频率。二维数组元素为105 ?????? 105; C; m大小,元素之间的缝隙为5-; C; m。环形阵列围绕方形2-D阵列,并提供了从环形阵列发送和与2-D阵列一起接收的选项。每个环形阵列元件的面积为0.71 mm 2 ,元件之间的缝隙为16-; C; m。活性压电材料是(1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 (PMN-PT)/环氧1-3复合材料,其特征在于PMN-PT支柱的侧向尺寸为8; C; m,平均间隙宽度为-C; 4; C; m,这是通过深反应生成的离子蚀刻(DRIE)干蚀刻技术。提出了一种用于高密度,小尺寸阵列元件的新型电互连策略。组装后,对阵列换能器进行测试和表征。测量每个阵列元件的电容,脉冲回波响应和串扰。达到了所需的-C; 60 MHz中心频率,接收信号的-6-dB带宽为-C; 50%。在中心频率处,相邻二维阵列元件之间的串扰约为-33 dB。本文描述的技术可用于构建包含较小元素的较大阵列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号