...
首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >SCALP: an iterative-improvement-based low-power data path synthesis system
【24h】

SCALP: an iterative-improvement-based low-power data path synthesis system

机译:SCALP:一种基于迭代改进的低功耗数据路径综合系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we present SCALP, a comprehensive low-power data path synthesis system that performs the various high-level synthesis tasks (transformations, scheduling, clock selection, module selection, and hardware allocation and assignment) with an aim of reducing the power consumption in the synthesized data path. Focusing on only one or a small subset of the high-level synthesis tasks makes it difficult to realize the full potential for power savings at the algorithm and architecture levels. Our synthesis algorithms, which are based on an iterative improvement strategy with efficient pruning techniques, are capable of performing the various high-level synthesis tasks (and considering their interactions) in an efficient manner. Supply voltage and clock period pruning strategies are used for quickly eliminating inferior design points during the search for the minimum power solution. Estimating switched capacitance accurately at intermediate stages during high-level synthesis can be challenging since the exact structure of the circuit, which affects both physical capacitance and switching activity, may not be available, and due to the high computational complexity of running register-transfer level power analysis tools several times during high-level synthesis. SCALP overcomes the above problems by maintaining a complete image of the structural register-transfer level (RTL) circuit (this is possible since we have a complete solution at any point during iterative improvement), and employing a very fast switched capacitance estimation technique that Is based on the concept of switched capacitance matrices. Our system can handle diverse module libraries and utilize complex scheduling constructs such as multicycling, chaining, and structural pipelining. Retiming and functional pipelining are used in our system to meet tight performance constraints, and to enable the ensuing synthesis steps to better explore the implementation space. Results on several real-life examples are presented to demonstrate the effectiveness of the algorithm. Power estimates obtained using switch-level simulation after layout indicate that up to an order-of-magnitude of power savings can be obtained using our synthesis system.
机译:在本文中,我们介绍了SCALP,这是一个全面的低功耗数据路径综合系统,可以执行各种高级综合任务(转换,调度,时钟选择,模块选择以及硬件分配和分配),以降低功耗。综合数据路径中的消耗。仅关注高级综合任务中的一个或一小部分,就很难在算法和体系结构级别上实现节电的全部潜力。我们的综合算法基于具有有效修剪技术的迭代改进策略,能够以高效的方式执行各种高级综合任务(并考虑其相互作用)。电源电压和时钟周期修剪策略用于在寻找最小功率解决方案期间快速消除劣质设计点。在高层综合过程中的中间阶段准确估算开关电容可能是具有挑战性的,因为可能无法使用影响物理电容和开关活动的确切电路结构,并且由于运行寄存器传输级的计算复杂性高功率分析工具在高级综合过程中多次使用。 SCALP通过保持结构寄存器传输级(RTL)电路的完整图像来克服上述问题(这是可能的,因为在迭代改进过程中的任何时候我们都有完整的解决方案),并采用了非常快的开关电容估算技术基于开关电容矩阵的概念。我们的系统可以处理各种模块库,并利用复杂的调度结构,例如多循环,链接和结构化流水线。在我们的系统中使用了重定时和功能流水线技术来满足严格的性能约束,并使随后的综合步骤能够更好地探索实现空间。给出了几个真实示例的结果,以证明该算法的有效性。布局后使用开关级仿真获得的功率估计值表明,使用我们的综合系统可以节省多达一个数量级的功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号