首页> 外文期刊>Fuel >Comprehensive modeling of multiple transport mechanisms in shale gas reservoir production
【24h】

Comprehensive modeling of multiple transport mechanisms in shale gas reservoir production

机译:页岩气水库生产多运输机制综合建模

获取原文
获取原文并翻译 | 示例
           

摘要

A boom in the production of shale gas has recently impacted the world's energy supply. The hydraulic fracturing technology has been widely used in the development of shale gas reservoirs. Models for accurate reservoir simulation are essential for their economic production. In this paper, a model for shale gas reservoir production is proposed to account for slip flow, Knudsen diffusion, surface diffusion, gas adsorption/desorption, stress dependence of a pore structure, a non-ideal gas effect, and a flow mechanism difference between organic and inorganic content in the shale matrix. This model is implemented in our in-house simulator with a coupled MINC-EDFM approach to study and predict shale gas production behavior. Comprehensive sensitivity studies are performed to analyze the importance of different parameters in shale gas production. These parameters are divided into two categories. The first category includes reservoir data, such as shale matrix porosity, a nanopore radius, an organic/inorganic volume ratio, hydraulic fracture half-length, and fracture spacing. The second category includes parameters relevant to flow mechanisms, such as a non-ideal gas effect, stress dependence, presence of an adsorbed layer as well as a selection of a flow mechanism model. It is found that parameters related to hydraulic fractures impact calculated gas production more than reservoir matrix data. Among the fracturing parameters, hydraulic fracture half-length has a stronger effect than fracture spacing, and among matrix properties, porosity has a larger impact than a nanopore radius or the assumed organic/inorganic content ratio. These results help to optimize a shale gas reservoir production design. In addition, in a synthetic case assuming a 1 nm pore radius, the presence of an adsorbed gas layer has a more tremendous effect compared to the non-ideal gas and stress dependence phenomena. Moreover, the developed simulator with the multiple transport mechanisms can be used to accurately predict shale gas reservoir production. The findings of this study help a better understanding of shale gas flow and can be used to enhance the production of shale gas reservoirs.
机译:繁荣在生产页岩天然气的生产最近影响了世界的能源供应。液压压裂技术已广泛应用于页岩气藏的发展。准确的储层模拟模型对于其经济生产至关重要。在本文中,提出了一种用于页岩气储层生产的模型,以考虑滑动流,滚子扩散,表面扩散,气体吸附/解吸,孔隙结构的应力依赖性,非理想的气体效应和流量机构差异页岩基质中的有机和无机含量。该模型在我们的内部模拟器中实现,具有耦合的MINC-EDFM方法来研究和预测页岩气生产行为。进行综合敏感性研究以分析不同参数在页岩气产量中的重要性。这些参数分为两类。第一类包括储层数据,例如页岩基质孔隙率,纳米孔半径,有机/无机体积比,液压裂缝半长和断裂间隔。第二类包括与流动机构相关的参数,例如非理想的气体效应,应力依赖性,吸附层的存在以及流动机构模型的选择。结果发现,与液压裂缝有关的参数,撞击储气产生的气体产生多于储层矩阵数据。在压裂参数中,液压裂缝半长度具有比裂缝间距更强的效果,并且基质特性,孔隙率比纳米孔半径或假设的有机/无机含量比具有更大的冲击。这些结果有助于优化页岩气藏生产设计。另外,在假设1nm孔半径的合成壳中,与非理想气体和应力依赖性现象相比,吸附气体层的存在具有更大的效果。此外,具有多种传输机构的开发模拟器可用于准确地预测页岩气藏生产。本研究的结果有助于更好地了解页岩气流,可用于增强页岩气藏的生产。

著录项

  • 来源
    《Fuel》 |2020年第1期|118159.1-118159.16|共16页
  • 作者单位

    Univ Calgary Dept Chem & Petr Engn Calgary AB T2N 1N4 Canada;

    South China Univ Technol Sch Math Sci Guangzhou 510640 Peoples R China;

    Univ Calgary Dept Chem & Petr Engn Calgary AB T2N 1N4 Canada;

    China Univ Petr State Key Lab Petr Resources & Prospecting Beijing 102249 Peoples R China;

    Univ Calgary Dept Chem & Petr Engn Calgary AB T2N 1N4 Canada|China Univ Petr State Key Lab Petr Resources & Prospecting Beijing 102249 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shale gas; Transport mechanism; Nanopore; Hydraulic fractures; Permeability; Shale matrix;

    机译:页岩气;运输机制;纳米孔;液压骨折;渗透率;页岩基质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号