首页> 外文期刊>Journal of Petroleum Exploration and Production Technology >Molecular simulation and microtextural characterization of quartz dissolution in sodium hydroxide
【24h】

Molecular simulation and microtextural characterization of quartz dissolution in sodium hydroxide

机译:氢氧化钠中石英溶解的分子模拟与微小横脉

获取原文
           

摘要

This study uses empirical experimental evidence and Material Studio simulations to explain the interaction of sodium hydroxide (NaOH) with quartz. Density functional theory (DFT) calculations were carried out using the Cambridge Serial Total Energy Package. In addition, quartz grains subjected to dissolution in NaOH were characterized using scanning electron microscopy. The so-called O-middle termination in the quartz tetrahedron structure, typified by a solitary exposed oxygen atom at the surface, is the most susceptible SiO2 terminations to NaOH attack, as it is associated with the lowest surface energy. The adsorption energy values are ??1.44?kcal/mol and ??5.90?kcal/mol for a single atom layer and five-layered atomic structure, respectively. The DFT calculation reveals intramolecular energy is the dominant adsorption energy, followed by a weak van der Waals energy. The NaOH adsorbed on quartz (001) surface constitutes a lower band gap of 0.138?eV compared to cleaved quartz (001) surface (0.157?eV). In addition, the energy range of NaOH adsorbed on quartz is wider (??50 to 10?eV), compared to (001) quartz (??20 to 11?eV). The dissolved quartz showed the precipitation of sorbed silicate phases due to incongruent reactions, which indicates new voids and etch pits can be created through the cleaving of the sodium silicates sorbed into the quartz surface. The adsorption energy for NaOH interactions with reservoir sandstone was significantly higher compared to the solitary crystal grains, which can be attributed to the isotropic deformation of a single crystal, and non-uniform deformations of adjacent grains in granular quartz of sandstone reservoir. It can be inferred that exposure to NaOH will affect the structure and reactivity of quartz. The quartz surface textural study indicates that dissolution of crystalline (granite) and clastic rocks (sandstone) is critical to the development of voids, which will improve permeability by providing channels and routes for the passage of hydrothermal and reservoir fluids.
机译:本研究采用经验实验证据和材料工作室模拟来解释氢氧化钠(NaOH)与石英的相互作用。使用剑桥串行总能量包进行密度泛函理论(DFT)计算。此外,使用扫描电子显微镜表征在NaOH中进行溶解的石英颗粒。在石英四面体结构中所谓的O-中间终端,在表面上呈孤立暴露的氧原子键化,是NaOH攻击最易感的SiO2终端,因为它与最低表面能相关。吸附能量值分别为1.44 kcal / mol,分别为单个原子层和五层原子结构的5.90克尔/ mol。 DFT计算揭示了分子内能量是主要的吸附能量,其次是弱范德瓦尔斯能量。与裂解的石英(001)表面相比,吸附在石英(001)表面上的NaOH构成0.138的较低带隙。此外,与(001)石英(20至11□EV)相比,石英上吸附在石英上的NaOH的能量范围更宽(?? 50至10?EV)。溶解的石英显示出由于不一致的反应引起的吸附硅酸盐阶段的沉淀,这表明可以通过将硅酸钠的裂隙粘接到石英表面的硅酸钠切割来产生新的空隙和蚀刻坑。与储层砂岩的NaOH相互作用的吸附能量与孤立晶粒相比显着高,这可以归因于单晶的各向同性变形,以及砂岩储层颗粒石英中相邻颗粒的不均匀变形。可以推断出暴露于NaOH会影响石英的结构和反应性。石英表面纹理研究表明,结晶(花岗岩)和碎片岩石(砂岩)的溶解对空隙的发展至关重要,这将通过提供水热和储层流体通过提供通道和途径来改善渗透性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号