...
首页> 外文期刊>Nature Communications >Electrical gate control of spin current in van der Waals heterostructures at room temperature
【24h】

Electrical gate control of spin current in van der Waals heterostructures at room temperature

机译:室温范德华异质结构中自旋电流的电门控制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Two-dimensional (2D) crystals offer a unique platform due to their remarkable and contrasting spintronic properties, such as weak spin–orbit coupling (SOC) in graphene and strong SOC in molybdenum disulfide (MoS2). Here we combine graphene and MoS2 in a van der Waals heterostructure (vdWh) to demonstrate the electric gate control of the spin current and spin lifetime at room temperature. By performing non-local spin valve and Hanle measurements, we unambiguously prove the gate tunability of the spin current and spin lifetime in graphene/MoS2 vdWhs at 300?K. This unprecedented control over the spin parameters by orders of magnitude stems from the gate tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel conductivity leading to spin dephasing in high-SOC material. Our findings demonstrate an all-electrical spintronic device at room temperature with the creation, transport and control of the spin in 2D materials heterostructures, which can be key building blocks in future device architectures.
机译:二维(2D)晶体由于其显着的和相反的自旋电子学性质(例如,石墨烯中的弱自旋轨道耦合(SOC)和二硫化钼(MoS 2 )中的强SOC)而提供了一个独特的平台。在这里,我们在范德华异质结构(vdWh)中结合了石墨烯和MoS 2 ,以证明在室温下自旋电流和自旋寿命的电门控制。通过进行非局部自旋阀和Hanle测量,我们明确地证明了在300?K的石墨烯/ MoS 2 vdWhs中自旋电流的栅极可调性和自旋寿命。对自旋参数如此空前的控制,其数量级是由于MoS 2 /石墨烯界面处的肖特基势垒的栅极调谐和MoS 2 通道电导率导致自旋相移在高SOC材料中。我们的研究结果证明了室温下的全电动自旋电子器件具有2D材料异质结构中自旋的创建,传输和控制,这可能是未来设备架构中的关键构建块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号