...
首页> 外文期刊>Hereditas >Genetic population structure of the vulnerable bog fritillary butterfly
【24h】

Genetic population structure of the vulnerable bog fritillary butterfly

机译:脆弱沼泽贝母蝴蝶的遗传种群结构

获取原文
           

摘要

Habitat destruction, the leading cause of species extinction (Pimm and Raven 2000), is becoming increasingly common as human population growth continues. Habitat loss poses the greatest threat to the long term survival of species on earth and has three major components: straightforward destruction of habitat, increasing fragmentation and deterioration of habitat quality. Habitat fragmentation, i.e. the reduction of continuous habitat into several smaller spatially isolated remnants, decreases species richness, increases edge effects, decreases density and abundance of species, alters interspecific interactions and ecological processes, and decreases connectivity (Debinski and Holt 2000). Following the theory of island biogeography, species richness in habitat fragments is expected to be a function of island size and degree of isolation. Smaller, more isolated fragments are expected to retain fewer species than larger, less isolated patches. Comparable to the effects of area on species richness, one might expect to observe area effects on genetic diversity within species; smaller fragments having a lower genetic diversity compared to larger fragments. Genetic diversity is essential in conservation biology for at least two reasons. First of all, the fundamental theorem of natural selection (Fisher 1930) tells us that “the rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time”, i.e. the rate of evolutionary change in a population is proportional to the amount of genetic diversity available. Consequently, loss of genetic diversity reduces future evolutionary options (Frankel et al. 1995; Lande 1995). Secondly, decreasing genetic diversity (partly measured by heterozygosity, or the state of having one or more pairs of non-identical alleles) increases the extinction risk of populations due to a decline in fitness of individuals (Meffe and Carroll 1994; Oostermeijer et al. 1995; Saccheri et al. 1998; Shikano and Taniguchi 2002). That genetic diversity is inversely proportional to isolation and that it is directly correlated with population size has been proven empirically numerous times. A review by Frankham (1996), including 23 allozyme studies, showed that in 22 of these studies genetic variation within a species was correlated with population size. A study by Schmitt and Seitz (2002) on the butterfly Polyommatus coridon, detected a tendency of genetic erosion in smaller populations and found that gene flow was much higher in regions with high habitat densities than in areas with very fragmented habitats, i.e. populations where isolation was greatest had significantly reduced amounts of gene flow which is though to be a trigger for genetic erosion in isolated populations. Another butterfly study, using microsatellite markers, found that larger populations support significantly higher levels of genetic diversity than do small populations, but did not detect an influence of isolation on genetic diversity (Harper et al. 2003). The authors believe that this was largely due to the closed population structure, i.e. very little gene flow occurring even between closely situated habitats.In this study, we use RAPDs (random amplified polymorphic DNA) to analyse the genetic diversity and population structure of a butterfly species in which dispersal and demography are exceptionally well known (Petit et al. 2001; Schtickzelle et al. 2002; Schtickzelle and Baguette 2003, 2004). In the Belgian Ardennes, the bog fritillary butterfly, Proclossiana eunomia Esper, is present in several clusters of suitable habitat patches. The current distribution of favourable habitats for this vulnerable species is influenced by two factors. First, since soil conditions required for the species’ presence are particular (seasonal alternation of flooding and dry periods), its habitat (wet hay meadows) is naturally patchy along river valleys or in peat bogs on uplands. Secondly, important changes in agricultu
机译:生境破坏是物种灭绝的主要原因(Pimm和Raven,2000年),随着人口的持续增长,它变得越来越普遍。生境的丧失对地球上物种的长期生存构成最大威胁,它具有三个主要组成部分:生境的直接破坏,​​日益加剧的破碎化和生境质量的恶化。生境破碎化,即将连续生境减少为几个较小的空间隔离的残余物,减少物种丰富度,增加边缘效应,减少物种的密度和丰度,改变种间相互作用和生态过程,并降低连通性(Debinski and Holt 2000)。根据岛屿生物地理学的理论,生境碎片中物种的丰富度预计将随岛屿大小和隔离程度而变。与较大的,较少分离的斑块相比,较小的,分离更多的碎片预计保留的物种较少。与面积对物种丰富度的影响相比,人们可能期望观察到面积对物种内遗传多样性的影响;与较大片段相比,较小片段具有较低的遗传多样性。遗传多样性在保护生物学中至关重要,至少有两个原因。首先,自然选择的基本定理(Fisher 1930)告诉我们,“任何生物体在任何时候的适应度增加率都等于其当时的适应度遗传变异”,即人口与可用遗传多样性的数量成正比。因此,遗传多样性的丧失减少了未来的进化选择(Frankel et al。1995; Lande 1995)。其次,由于个体适应性下降,遗传多样性的降低(部分通过杂合性或具有一对或多对异等位基因的状态来衡量)会增加种群的灭绝风险(Meffe和Carroll 1994; Oostermeijer等。 1995; Saccheri等,1998; Shikano和Taniguchi,2002)。经验证明,遗传多样性与隔离成反比,并且与种群数量直接相关。弗兰克姆(Frankham,1996)的一项综述,包括23个同工酶研究,表明其中22项研究中,一个物种内的遗传变异与种群数量相关。 Schmitt和Seitz(2002)对蝴蝶Polyommatus子午线的研究发现了较小种群的遗传侵蚀趋势,发现栖息地密度高的地区的基因流要比栖息地非常零散的地区(即孤立的种群)高得多。最大的问题是显着减少了基因流量,这虽然是孤立人群遗传侵蚀的诱因。另一个使用微卫星标记的蝴蝶研究发现,较大的种群比较小的种群支持更高水平的遗传多样性,但没有发现隔离对遗传多样性的影响(Harper等,2003)。作者认为,这主要是由于封闭的种群结构,即即使在位置较近的生境之间也很少发生基因流动。在这项研究中,我们使用RAPD(随机扩增多态性DNA)分析了蝴蝶的遗传多样性和种群结构。这些物种在分散和人口统计学方面是众所周知的(Petit等人,2001; Schtickzelle等人,2002; Schtickzelle和Baguette,2003,2004)。在比利时的阿登省,沼泽贝母蝴蝶Proclossiana eunomia Esper存在于一些合适的栖息地丛中。该脆弱物种目前有利的生境分布受到两个因素的影响。首先,由于该物种存在所需的土壤条件非常特殊(洪水和干旱季节的季节交替),因此其栖息地(湿干草草甸)沿河谷或高地的泥炭沼泽自然成片。其次,农业的重要变化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号