首页> 外文期刊>Computational biology and chemistry >Genomic Splice Site Prediction Algorithm Based On Nucleotide Sequence Pattern For Rna Viruses
【24h】

Genomic Splice Site Prediction Algorithm Based On Nucleotide Sequence Pattern For Rna Viruses

机译:基于核苷酸序列模式的Rna病毒基因组剪接位点预测算法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Splice site prediction on an RNA virus has two potential difficulties seriously degrading the performance of most conventional splice site predictors. One is a limited number of strains available for a virus species and the other is the diversified sequence patterns around the splice sites caused by the high mutation frequency. To overcome these two difficulties, a new algorithm called Genomic Splice Site Prediction (GSSP) algorithm, was proposed for splice site prediction of RNA viruses. The key idea of the GSSP algorithm was to characterize the interdependency among the nucleotides and base positions based on the eigen-patterns. Identified by a sequence pattern mining technique, each eigen-pattern specified a unique composition of the base positions and the nucleotides occurring at the positions. To remedy the problem of insufficient training data due to the limited number of strains for an RNA virus, a cross-species strategy was employed in this study. The GSSP algorithm was shown to be effective and superior to two conventional methods in predicting the splice sites of five RNA species in the Orthomyxoviruses family. The sensitivity and specificity achieved by the GSSP algorithm was higher than 99 and 94%, respectively, for the donor sites, and was higher than 96 and 92%, respectively, for the acceptor sites.
机译:RNA病毒的剪接位点预测有两个潜在的困难,它们会严重降低大多数常规剪接位点预测器的性能。一种是可用于病毒物种的有限数量的菌株,另一种是由高突变频率引起的剪接位点附近的多样化序列模式。为了克服这两个困难,提出了一种称为基因组剪接位点预测(GSSP)算法的新算法,用于RNA病毒的剪接位点预测。 GSSP算法的关键思想是基于特征模式表征核苷酸和碱基位置之间的相互依赖性。通过序列模式挖掘技术进行识别,每个特征模式都指定了碱基位置和在该位置出现的核苷酸的唯一组成。为了解决由于RNA病毒株数量有限而导致训练数据不足的问题,本研究采用了跨物种策略。 GSSP算法在预测正粘病毒家族中五个RNA物种的剪接位点方面被证明是有效的,并且优于两种常规方法。 GSSP算法获得的敏感性和特异性分别对供体位点高于99%和94%,对于受体位点分别高于96%和92%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号